

Augmented Reality Interaction Techniques in Education

Thesis submitted to the Department of Computer Science Faculty of Computer and Information Sciences Ain Shams University

In partial fulfilment of the requirements for the Degree of Master in Computer and Information Sciences

By

Loubna Ahmed Ibrahim

B.Sc. in Computer and Information Sciences (2011) Ain Shams University – Cairo

Under the supervision of

Prof. Dr. Taha Elarif

Professor of Computer Science Faculty of Computer and Information Sciences Ain Shams University

Dr. Doaa Hegazy

Assistant Professor at Department of Scientific Computing Faculty of Computer and Information Sciences Ain Shams University

Dr. Salma Hamdy

Assistant Professor at Department of Computer Science Faculty of Computer and Information Sciences Ain Shams University

Cairo - 2019

Acknowledgements

I would first like to thank my supervisors; Prof. Dr. Taha Elarif, Dr. Doaa Hegazy and Dr. Salma Hamdy, for their support, guidance and cooperation throughout this thesis. Their suggestions and enhancements helped me a lot.

I would like also to thank my colleague Marwa Shams for her extensive help and cooperation. She clarified many points to me and offered me a lot of help and support.

Finally, I would like to express my gratitude to my parents, husband and sister for their support, encouragement and prayers. I would have never completed it without them.

Abstract

The goal of this thesis is to implement a 2D marker-based finger (thumb and index together) interaction with midair 3D virtual objects. Moreover, we provide the user a visual feedback upon successful selection of the 3D virtual object. The proposed system supports the three basic canonical manipulations; translation, scaling and rotation. In order to evaluate our system, we conducted a set of case studies to test our proposed approach. In addition, a touch-based case study was conducted to compare the results of our proposed approach and that of the touchbased. Our results were based on the performance (completion) time per each task per each participant in addition to a subjective questionnaire that was answered by the participants after finishing the case studies. Our results showed that although touch-based proved to be easier and faster, the proposed midair finger gesture approach proved to be more fun and engaging. Finally, we introduce an implementation of an educational application for kids for shapes sorting in their correct places. The methodology on which the application is built is an intangible technique were the user (kid) attaches colored stickers (markers) to his/her fingertips and interact with the virtual objects appearing on the mobile device screen.

List of Publications

- 1. Loubna A. Ibrahim, Taha El-Arif, Doaa Hegazy, Salma Hamdy, "Interaction Techniques in Mobile Augmented Reality: State-of-the-art", IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 424-233, 2015.
- 2. Loubna A. Ibrahim, Taha Al-Arif, Doaa Hegazy, Salma Hamdy, "Marker-based Finger Gesture Interaction in Mobile Augmented Reality", in ITHEA International Journal "Information Technologies and Knowledge" (IJ ITK), Jan. 2019.

Table of Contents

Ackno	wledgements	. i
Abstra	ct	ii
Chapte	er 1. Introduction	.2
1.1.	Overview	.2
1.2.	Motivation	.4
1.3.	Problem Statement	.4
1.4.	Proposed Work	.4
1.5.	Thesis Organization	.5
Chapte	er 2. Overview about Augmented Reality	.7
2.1.	What is AR	.7
2.2.	History of AR	.8
2.3.	Applications of AR	.9
2.4.	AR Technologies	. 1
2.5.	Research Tracks	. 1
2.5	1.1. Interaction	. 1
Chapte	er 3. Literature Review and Related Work	.4
3.1.	Overview	4
3.2.	Tangible Interaction Techniques	.4
3.3.	Intangible Interaction Techniques	.7
3.4.	Conclusion	32
Chapte	er 4. Proposed Approach	34
4.1.	System Implementation	35
4.2.	Detection of Markers on Fingertips	35
4.2	2.1. Methodology of Detection of Markers	35
4.2	2.2. Color Spaces.	37
4.3.	3D Virtual Object Bounding Box Creation	38

4.4. Coordinate Systems Mapping	39
4.5. Interaction between fingertips and virtual object	40
4.5.1. Model View Projection Matrices	40
4.5.2. Interaction Types	42
4.6. Visual Feedback	45
Chapter 5. Testing Case Studies and Results	47
5.1. Midair Finger Gesture Case Study	47
5.1.1. Experiment Setup	47
5.1.2. Participants	48
5.1.3. Scenarios	49
5.1.4. Results	51
5.2. Touch-based Case Study	54
5.2.1. Experiment Setup	54
5.2.2. Participants	54
5.2.3. Scenarios	54
5.2.4. Results	55
5.3. Comparison between the two approaches	57
Chapter 6. Educational Application	59
6.1. Overview	59
6.2. Idea	59
Chapter 7. Conclusion and Future Work	63
7.1. Conclusion	63
7.2. Future Work	64
References	65
ملخص الرسالة	69

List of Figures

Figure 1.1. Mobile AR
Figure 1.2. Applications of interaction in Mobile AR. Daqri's App4
Figure 2.1. Augmented reality example
Figure 2.2. History of AR8
Figure 2.3. Examples of using AR in different applications8
Figure 2.4. Medical application for dental surgery. The application shows the
medical record for a patient, overlapping the radiography image to the face; points
of interest are highlighted as well as doctor's annotations9
Figure 2.5. Tourism application. The application shows the user's location and a
selection of points of interest in the nearby area, such as: museums, restaurants and
transport's lines
Figure 2.6. AR Research Topics
Figure 3.1. Proposed Touch-based technique: (a) Object selection. (b) Entry in the
context menu
Figure 3.2. Proposed Device-based technique: (a) Selection by pointing a reticule
to the target. (b) The bar is filled while selection process
Figure 3.3 (a) The Marking menu in freeze view touch approach(b) Coordinate
buttons
Figure 3.4. Finger-based. Interaction by using a green marker for tracking18
Figure 3.5. Marker-based Translation implemented using a game board19
Figure 3.6 Marker-based Scaling implemented using a game board19
Figure 3.7. Marker-based Rotation implemented using a game board. (a) Rotation
using one finger. (b) Rotation using two fingers
Figure 3.8. Time taken to solve the tasks in the three proposed approaches21
Figure 3.9. Interaction flow of proposed mobile AR application22
Figure 3.10. The chief fingertip with two circles; when the circle disappears, all
interaction types become activated23
Figure 3.11. Gesture-Based Interaction using Client-Server Framework (a) System
framework (b) System setup24
Figure 3.12. System Setup of Gesture-based interaction using a tablet25
Figure 3.13. Fingertip detection steps. (a) Hand segmentation through thresholding.
(b) Contour finding and fingertip analysis (c) Fingertip visualization in the live
video 27

Figure 3.14. Flow Diagram of the marker-less real-time handling interaction2	8
Figure 3.15. (a) and (b) show translation and scaling interaction (c) shows	
continuous value adjustment, applied to box transparency. In this experiment, the	
user attempts to match a target opacity value (d) shows (as debug information) the	:
4*4 grid board used to track the hand	8
Figure 3.16. Basic finger-based interaction gesture	9
Figure 3.17. Setup and markers used in the evaluation for pilot study for handling	
multimodal feedback3	0
Figure 3.18. Bounding box around the object for providing Visual feedback3	1
Figure 4.1. Proposed Framework	
Figure 4.2. Model View Projection Matrices Diagram4	1
Figure 4.3. The selection mechanism4	2
Figure 4.4. (a) shows the object selection by the two fingers. (b) shows the object	
after being translated to the right direction. (c) shows the object after scaling	
(zooming in). (d) shows the object after rotation in clockwise direction4	3
Figure 5.1. The translation task. (a) shows the manipulated cube in yellow and	
shaded in black and the target cube in green. (b) shows the manipulated cube after	
matching the target and colored in aqua4	9
Figure 5.2. The different case studies. (a) shows the rotation task. (b) shows the	
scaling task. (c) shows the hybrid task; scaling and translation5	0
Figure 5.3. Average Completion Time for each task in Midair Gesture Approach 5	2
Figure 5.4. Results of Subjective Questionnaires5	3
Figure 5.5. Touch-based Experiment	5
Figure 5.6. Average Completion Time for each task in Touch-Based Approach5	6
Figure 5.7. Results of Touch-based approach Questionnaire5	6
Figure 6.1. Shapes Board Game6	0
Figure 6.2. Animal Toy Cards Educational App6	0
Figure 6.3. Proposed Education Shapes Board App.(a) shows the setup of the	
shapes board. (b) shows when holding a shape(triangle) correctly. (c) shows when	
matching the shape in its correct place6	1

List of Tables

Table 1.Times how often an interface was ranked first, second,	
and third with respect to performance versus fun and engagement	
versus both (T touch screen, D device, F finger)	21
Table 2. Subjective Questionnaire about the proposed system	48
Table 3. Touch-based Case Study Questionnaire	56
Table 4. Comparison between Touch-Based and Midair Finger Gesture	57

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

AR Augmented Reality

CMYK Cyan, Magenta, Yellow and Key

FPS Frame Per Second

HCI Human Computer Interaction

HSV Hue Saturation Value

MVP Model View Projection

NDC Normalized Device Coordinates

NDK Native Development Kit

PC Personal Computer

RGB Red Green Blue

SDK Software Development Kit

UI User Interface

Chapter 1

Introduction

- 1.1. Overview
- 1.2. Motivation
- 1.3. Problem Statement
- 1.4. Proposed Work
- 1.5. Thesis Organization

Chapter 1. Introduction

1.1. Overview

Over the past years, Augmented Reality (AR) has evolved and one of its evolutions is mobile AR (Figure 1.1). A key point of mobile AR is being reactive, which imposes real-time constraints. Hence, developing and improving interaction methods for AR have gained a wide interest in the past few years with the massive growth of mobile technology. Interaction techniques focus on allowing the users to interact with the emerging virtual object and are considered the basis for having a successful AR system. Interaction techniques offer engagement to the users and let the mobile AR system seem alive.

The interaction techniques can be categorized into tangible and intangible, adopting a classification introduced by Bai H. et al. [1]. Tangible interaction techniques refer to the type of interaction where the user physically touches something, whether a mobile screen (touch-based) or a keypad (device-based) [1]. On the other hand, intangible techniques refer to the systems where the user has no physical connection with the environment, such as midair gestures. Tangible techniques proved to be easier to use and non-stressful compared to the intangible techniques. On the other hand, intangible techniques proved to be more engaging and fun to the users, and closer to the real-world interaction than tangible ones.

Figure 1.1. Mobile AR

One of the intangible techniques is the finger-based gesture interaction. Finger gesture interaction techniques can be either 2D or 3D; hence the virtual object can be transformed in 2D or 3D. They rely on detecting the user's hands and(or) fingers. For fingers detection, finger tips can have markers attached (marker-based) to them or marker less. 3D interaction needs an extra camera to provide the depth; for example, Kinect or Prime Sense to capture the fingers in 3D. While 2D can only rely on the mobile device in-built camera.

There are various applications where this approach is needed; such as games and education. Educational applications let students interact and get engaged in what they learn by making the content visible and interactive. For example, in history, students can interact with historical sites as if it is brought to life. Also, in science like physics and chemistry where everything is invisible; as an example, the molecules and chemical reactions can be visible and interactive. Daqri's application offers the interaction between chemical elements, as shown in Figure 1.2. Besides, story books become more engaging and fun when being interactive. In 2018, authors in [37] presented an application for offering information and experience about the endangered animals in Indonesia through virtual objects of those animals.

Figure 1.2. Applications of interaction in Mobile AR. Daqri's App.

1.2. **Motivation**

Our motivation is to provide a 2D midair marker-based finger interaction with the 3D virtual objects. Moreover, to provide the user a visual feedback upon interaction with the virtual object; the color of the object's border changes to black upon selection.

1.3. **Problem Statement**

The interaction with the virtual objects is a challenging and evolving field. Thus, the problem we are targeting in this thesis is to study the different interaction techniques. These techniques are either the tangible (touch-based) or the intangible. The intangible interaction can be either 2D interaction with only the camera of the mobile device or 3D interaction with the aid of a depth camera. In this thesis, we will implement and compare between the tangible (touch-based) technique and the intangible 2D technique. Also, we present how the intangible techniques can be used in educational field in the real-life.

1.4. **Proposed Work**

Our proposed system is a 2D marker-based finger interaction with 3D virtual objects in midair. The proposed system first, detects the positions of the colored

markers which are captured by the 2D mobile device's camera. Then, specifies the position of the intended virtual object. Hence, there is no need for touch input. Upon the selection of the virtual object by the user's two fingers, the system changes the color of the object to visually feedback the user that the object is selected. The user can manipulate the object by either translating, rotating or scaling it.

In addition, we present an application for this approach in Education. This application resembles the educational game for kids of the real shapes board.

1.5. Thesis Organization

This Thesis is organized as follows. In Chapter 2, a brief overview about Augmented Reality is introduced. Chapter 3 presents the related work by listing some of the previous techniques - tangible and intangible - regarding the interaction between the users and the virtual object on mobile devices. The design and implementation of how our proposed approach works is illustrated in Chapter 4. Chapter 5 discusses the case studies conducted for the purpose of testing the approach as well as the results in terms of completion time and user experience. The educational application is presented in Chapter 6. Finally, the conclusion and directions of future work can be found in Chapter 7.