The Relation Between Inner Segment/ Outer Segment Junction And Visual Acuity Before And After Ranibizumab In Diabetic Macular Edema

Thesis

Submitted for Partial Fulfillment of the Master Degree
In Ophthalmology

By

Noha Hassan Abdellah Hareedy

(M.B.,B.Ch.)

Supervised by

Prof. Dr. Ayman Abdel Moneim Gaafar

Professor of Ophthalmology
Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Hisham Khairy Abdel Dayem

Assistant Professor of Ophthalmology Faculty of Medicine - Ain shams University

Dr. Reham Fawzy El-Shinawy

Lecturer of Ophthalmology
Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2019

First, I would like to thank God for blessing this work until it has reached its end, as a part of his generous guidance and help throughout my life.

I would like to express my sincere gratitude to **Prof. Dr. Ayman**Abdel Moneim Gaafar, Professor of ophthalmology, Faculty of Medicine,

Ain Shams University, for his support, encouragement and the effort he
has done in the revision of the whole work.

I would like also to extend my thanks to **Prof. Dr. Hisham Khairy Abdel Dayem,** Assistant Professor of Ophthalmology, Faculty of Medicine, Ain Shams University for her sincere guidance throughout this work.

My sincere appreciation for **Dr. Reham Fawzy El-Shinawy**, Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University, who has taken the time and effort to read and modify this work.

My gratitude cannot be fulfilled without expressing my profound gratitude to my family who has been a rich source of concern and encouragement.

List of Contents

Title Pa		Page
•	List of Abbreviations	I
•	List of Tables	III
•	List of Figures	V
•	Introduction	1
•	Aim of the Work	3
•	Review of Literature	4
•	Patients and Methods	39
•	Results	47
•	Discussion	68
•	Conclusion	76
•	Summary	77
•	References	79
•	Arabic Summary	

List of Abbreviations

ACEAngiotensin Converting Enzyme **AGEs**.....Advanced Glycation End-Products **BCVA**.....Best Corrected Visual Acuity **BFGF**Basic Fibroblast Growth Factor **CME**.....Cystoid Macular Edema CMT......Central Macular Thickness COSTCone Outer Segment Tips CSF.....Central Sub Foveal **DM**.....Diabetes Mellitus **DME**Diabetic Macular Edema **DR**Diabetic Retinopathy **EGF**Epidermal Growth Factor **ELM**.....External Limiting Membrane ETDRS.....Early Treatment Diabetic Retinopathy Study **EZ**.....Ellipsoid Zone FFA.....Fundus Fluorescein Angiography GDNF.....Glial-Cell Derived Neurotropic Factor ICAM-AIntercellular Adhesion Molecule-A **IGF-1**Insulin-Like Growth Factor-1 **IOP**Intraocular Pressure **IPL**.....Inner Plexiform Layer IRMAIntraretinal Microvascular Abnormalities IS/OSInner Segment /Outer Segment **IZ**.....Interdigitation Zone Log MAR.....Logarithm of the Minimum Angle of Resolution **NPDR**......Non-Proliferative Diabetic Retinopathy

List of Abbreviations

OPL	.Outer Plexiform Layer		
PDGFs	Platelet-Derived Growth Factors		
PDR	Proliferative Diabetic Retinopathy		
PRP	Pan Retinal Photocoagulation		
RD	Retinal Detachment		
ROST	Rod Outer Segment Tips		
RPE	.Retinal Pigment Epithelial		
SD-OCT	.Spectral-Domain Optical Coherence Tomography		
SRD	.Serous Retinal Detachment		
TGF -β 2	Transforming Growth Factor-Beta 2		
TD-OCT	.Time-Domain Optical Coherence Tomography		
UV	.Ultra Violet		
VA	.Visual Acuity		
VEGF	Vascular Endothelial Growth Factor		
VMIAVitreomacular Interface Abnormality			

List of Tables

Table No.	Title Page
Table (1):	The peak response of different cones 10
Table (2):	Demographic data of studied patients 47
Table (3):	Type of DR and control of DM among the studied patients
Table (4):	Grading of IS/OS before ranibizumab 49
Table (5):	The relation of IS/OS before ranibizumab injection with all studied parameters
Table (6):	The relation of IS/OS after first injection with all studied parameters
Table (7):	The relation of IS/OS after second injection with all studied parameters 56
Table (8):	The relation of IS/OS after third injection with the studied parameters 57
Table (9):	Comparison between IS/OS before and after each injection with ranibizumab 61
Table (10):	The change of log Mar BCVA after each injection
Table (11):	The change of CMT after each injection 63
Table (12):	The change of retinal volume after each injection
Table (13):	The change of color vision after each injection

List of Tables

Table No.	Title	Page
Table (14):	The relation between CMT and color vision before ranibizumab	. 66
Table (15):	The relation between CMT and color vision after third injection	. 67

List of Figures

Figure No.	Title	Page
Fig. (1):	Illustration of eye anatomy and retinal layers	
Fig. (2):	Schematic diagram of the macula lutea of the retina, showing foveolations, and macula	,
Fig. (3):	Thickening of the retina and hard exudates	
Fig. (4):	Widespread loss of arterial smooth muscle cells and regions of capillary a cellularity in retinal vessel	7
Fig. (5):	Early microaneurysm, aneurysm with endothelial proliferation and aneurysm occluded with fibrin	l
Fig. (6):	Diabetic papillopathy	23
Fig. (7):	Schematic of a TD-OCT system	27
Fig. (8):	Schematic of a SD-OCT system	28
Fig. (9):	OCT shows diffuse macular edema	29
Fig. (10):	OCT shows cystoid macular edema	30
Fig. (11):	OCT scan shows marked cystoic macular edema with serous retinal detachment	1
Fig. (12):	OCT scan shows marked retinal thickening with hyperreflective posterior hyaloids attached to the top of the fovea	r
Fig. (13):	OCT scan shows the macula of normal eye	

List of Figures

Figure No.	Title	Page
Fig. (14):	Grading of the IS/OS defect	42
Fig. (15):	Type of diabetic retinopathy	48
Fig. (16):	Percent of control of diabetes mellitus.	48
Fig. (17):	Grading of IS/OS Before ranibizumab.	49
Fig. (18):	The relation of IS/OS with retination volume after first injection	
Fig. (19):	The relation of IS/OS with color vision after first injection	
Fig. (20):	The relation of IS/OS with BCVA after second injection	
Fig. (21):	The relation of IS/OS with CMT after second injection	
Fig. (22):	The relation of IS/OS with retinal volume after second injection	
Fig. (23):	The relation of IS/OS with color vision after second injection	
Fig. (24):	The relation of IS/OS with BCVA after third injection	
Fig. (25):	The relation of IS/OS with CMT after third injection	
Fig. (26):	The relation of IS/OS with retinal volume after the third injection	
Fig. (27):	The relation of IS/OS with color vision after third injection	
Fig. (28):	IS/OS before and after each injection	60

List of Figures

Figure No.	Title	Page
Fig. (29):	The change of log Mar BCVA after each injection	
Fig. (30):	The change of CMT after each injection	
Fig. (31):	The Change of retinal volume after each injection	
Fig. (32):	The relation between CMT and color vision before ranibizumab	
Fig. (33):	The relation between CMT and color vision after the third injection	

Introduction

The prevalence of diabetes mellitus (DM) is increasing worldwide, with estimates indicating that DM affected 285 million adults in 2010. This figure is projected to increase to 439 million by 2030.⁽¹⁾

Diabetic macular edema (DME) is a major cause of vision loss in diabetic patients. It has been accepted that macular edema can develop at all stages of retinopathy. Classically, patients have a gradual onset of blurred vision, and in more advanced cases, the macula becomes thickened and even cystic with profound visual loss. (2)

The pathological process of DME formation has several principal components; a primary event is breakdown of the blood-retinal barrier with a following increase in passive leakage and accumulation of water, salts and lipoproteins in the extra cellular compartment in the macula. One of the causes to the breakdown of the blood-retinal barrier seems to be an increase in vascular endothelial growth factor (VEGF).⁽³⁾

Intravitreal pharmacotherapy has significantly improved the treatment of diabetic retinopathy (DR) over the past decade. Drug trials demonstrated that ranibizumab improves visual acuity (VA) in the majority of patients.⁽⁴⁾

Because of the various clinical presentations of DME, specialized techniques such as spectral-domain optical coherence tomography (SD-OCT) have become an important tool and an important part of the diagnosis and management of this condition. The correlation between OCT measured macular thickness and VA. Furthermore, in some cases paradoxical changes in VA occur in response to changes in OCT-measured thickening. (5)

Although OCT can serve as a valuable tool in the clinical evaluation of patients with DME, OCT derived macular thickness measurements may not be appropriate as strong markers of VA. With the improvement of the visualization of retinal architecture offered by SD-OCT, the retinal photoreceptor layer can be evaluated accurately. It is reported that inner segment/outer segment (IS/OS) junction integrity has important value in studying retinal diseases. ⁽⁶⁾

Aim of the Work

The aim of this work is to evaluate the relation between the photoreceptor IS/OS, the best corrected visual acuity (BCVA) and color vision before and after the intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF); ranibizumab (Lucentis®) in patients with DME.

Anatomical Background of the Retina

Retina is a light-sensitive layer of tissue. Light striking the retina initiates a cascade of chemical and electrical events. Neural retina typically refers to three layers of neural cells (photo receptor cells, bipolar cells, and ganglion cells) within the retina that ultimately trigger nerve impulses. These are sent to various visual centers of the brain through the fibers of the optic nerve. (7)

The human retina has ten distinct layers (Figure 1). From closest to farthest from the vitreous body as follows:⁽⁸⁾

- 1. Inner limiting membrane is composed of extensive, expanded terminations of Müller cells (often called footplates) covered by a basement membrane.
- 2. Nerve fiber layer contains axons of the ganglion cell nuclei which a thin layer of Müller cell footplates exists between this layer and the inner limiting membrane.
- 3. Ganglion cell layer containing nuclei of ganglion cells, the axons of which become the optic nerve fibers.
- 4. Inner plexiform layer (IPL) contains the synapses between the bipolar cell axons and the dendrites of the ganglion and amacrine cells.

.Review of Literature

- 5. Inner nuclear layer which contains the nuclei and surrounding cell bodies of the amacrine cells, bipolar cells and horizontal cells.
- 6. Outer plexiform layer (OPL) contains projections of rod endings (rod spherules) and cone endings (cone pedicles). These make synapses with dendrites of bipolar cells.
- 7. Outer nuclear layer contains cell bodies of rods and cones.
- 8. External limiting membrane is layer that separates the inner segment portions of the photoreceptors from their cell nucleus.
- 9. Layer of rods and cones contain rod cells and cone cells.
- 10.Retinal pigment epithelium (RPE) which is a single layer of cuboidal cells.