

Women's Faculty for Arts, Science and Education .

Role of Rice Husk Ash for Heterogeneous Catalytic Conversion of Some Organic Compounds and of Its Effect on Some Environmental Hazards

A Thesis

Submitted to the Chemistry Department, Women's Faculty, Ain Shams University.

In Partial Fulfillment of the Requirements for the **Ph.D**.

Degree in Science.

(Physical Chemistry)

Presented by

Amira Said Hassan Mohamed

(M.Sc., 2015)

Supervised by

Prof. Dr. Essam Mohamed Ezzo

Prof. of Physical Chemistry Women's Faculty, Ain Shams University, Cairo - Egypt

Dr. Suzan Ahmad Hassan

Ass .Prof. of Physical Chemistry Women's Faculty, Ain Shams University, Cairo- Egypt

Dr. Magda Abdel Basset El-kherbawi

Lecturer of Physical Chemistry
Women's Faculty,
Ain Shams University,
Cairo - Egypt

(2019)

Women's Faculty for Arts, Science and Education, Chemistry Department.

APPROVAL SHEET

Role of Rice Husk Ash for Heterogeneous Catalytic Conversion of Some Organic Compounds and of Its Effect on Some Environmental Hazards

A Thesis Submitted for the Ph. D. Degree in Chemistry (Physical Chemistry)

By

Amira Said Hassan Mohamed

Board of Advisors Approved

Prof. Dr. Essam Mohamed Ezzo	
Ass. Prof .Suzan Ahmad Hassan	
Dr. Magda Abdel Basset El-kherbawi	

Head of Chemistry Department

Prof. Dr. Mansoura Ismail Mohamed

سورة البقرة الآية: ٣٢

Qualification

Student Name : Amira Said Hassan Mohamed

Scientific Degree : M.Sc. (physical Chemistry)

Department : Chemistry

Faculty : Faculty of Women

University : Ain Shams University

B.Sc. Graduation Date: 2011

M.Sc. Graduation Date: 2015

Acknowledgement

In the name of Allah, I start by thanking him for giving me the strength and patience to complete this study. Words are on real assistance to express my deepest gratitude and thanks to Prof. Ir. Essam Mohamed Esso Professor of Physical Chemistry, Chemistry Department, Women's Saculty for Arts, Science and Education, Ain Shams University. I would like to thank him for his guidance, patience and mentorship in addition to his technical knowledge, his support has made it easier to go through the upsand downs of research.

Also, S am indebted to express my sincere thank to Sr.

Suzan Ahmad Hassan and Sr Magda Abdel

Basset for their encouragement continuous help and carful quidance, through the accomplishment of this work

finally, my deep thanks to all staff members at my department for their encouragement and moral support

Amira Said

Dedication

Toprofessor 🕏r . Essam Mohammed Ezzo
for his great supervision and continuous advices.
To
love.
To
whole life.
ToAll my friends and colleagues for their kindness and
support.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	XII
ABBREVIATIONS	XIV
AIM OF WORK	XVI
CHAPTER I	1
I. INTRODUCTION.	1
I.A. Heterogeneous Catalysis	1
I.B. Catalyst Supports	. 2
I.B.i. Silica as Support Material	
I.B.i.a. Amorphous silica derived from rice husk ash	
I.B.i.b. Nano-structured silica	7
I.B.i.c.Transition metal-based catalysts	
I.B.i.d . Metal based catalysts	
I.B.i.e. Silica aerogels	
I.B.i.f. Current and future progress	
I.C. Supported Metal Catalysts Preparation	
I.C.i. Impregnation method	
I.C.ii. Sol- gel process	. 12
I.D. Heterogeneous Kinetic Study of Catalytic Conversion of Alcohols	12
I.E. Removal of Environmental Hazards	15
I.E.i Types and sources of pollution	
I.E.ii. Variable activity in micro-organisms	
I.E.ii.a. Bacteria	
I.E.ii.b. Fungi	
CHAPTER II	27
II. EXPERIMENTAL	27
II. A. STARTINGE MATERIALS	27
II.A.i. Reagents	. 27
II.A.ii. Preparation.	
II.B. PHYSICAL STUDIES	30

	Page
II.B.i. Textural Characteristics(BET)	30
II.B.ii. X-Ray Diffraction (XRD)	
II.B.iii. Transmission Electron Microscope(TEM)	
II.B.iv. Thermogravimetric Analysis (TGA and DTA)	
II.B.v. Differential Scanning Calorimetry (DSC)	44
II.C. KINETIC STUDY OF THE HETEROGENEOUS	
CATALYTIC CONVERSION OF BENZYLOL OVER Ni/SiR	
AND Ni/SiG CATALYSTS IN FLOW SYSTEM	46
II.C.i. Catalytic Apparatus of Flow Type	47
II.C.ii. Calibration of the Micro – Dose Pump	49
II.C.iii. Analysis of the Liquid Product by GL Chromatograph	. 49
II.C.iv. Determination of the Order of Reaction	. 49
II.C.v. Determination of Apparent Activation Energy	. 51
II.C.vi. Determination of the Change in Weight of the Catalysts	. 51
II.D. REMOVAL OF ENVIRONMENTAL HAZARDS	53
II.D.i. Pigments Removal	53
II.D.ii. Microbial Removal	54
III. CHAPTER III	57
III. RESULTS AND DISCUSSION	57
III.A.PHYSICOCHEMICAL PROPERTIES OF THE Ni/SiR	
AND Ni/SiG SOLIDS	57
III.A.i. Surface and Textural Characteristics.	. 57
III.A.i.a Adsorption- desorption isotherms	57
III.A.i.b. BET surface area	60
III.A.i.c. The V _L -t plots	62
III.A.i.d. Pore size distribution	64
III.A.ii. XRD	66
III.A.iii. TEM	70
III.A.iv. TGA and DTA	72
III.A.v. DSC	77
III.B. KINETICS OF HETEROGENEOUS CATALYTIC	
CONVERSION IN FLOW SYSTEM OVER THE Ni/SiR AND	
Ni/SiG SOLIDS	
	80

P	age
II.B.i. Determination of the Rate of Conversion of Over Ni/SiR	.,
Catalysts	81
II.B.ii. Determination of the Rate of Conversion of Over Ni/SiG	
Catalysts	102
III.B.iii. Determination of the Apparent Activation Energy for the	
Catalytic Conversion Over Ni/SiR Catalysts	122
III.B.iv. Determination of the Apparent Activation Energy for the	
Catalytic Conversion Over Ni/SiG Catalysts	139
III.B.v. Determination of the Catalytic Activity and Selectivty for	
the Catalytic over Ni/SiR and Ni/SiG Catalysts	156
III.B.vi. Reaction Mechanism for the Catalytic Conversion of	
Benzylol over Ni/SiR and Ni/SiG Catalysts	158
III.B.v. Thermodynamic Parameters for the Catalytic Conversion	
of Benzylol over Ni/SiR and Ni/SiG Catalysts	165
III.C.REMOVAL OF ENVEROMENTAL HAZARDS	167
III.C.i. Removal of Pigments by Adsorption	167
III.C.i.a. Effect of pH.	168
III.C.i.b. Effect of adsorbent dose.	171
III.C.i.c. Effect of contact time.	171
III.C.i.d. Effect of temperature.	175
III.C.i.e. Effect of initial concentration	175
III.C.i.f. Adsorption isotherms	177
III.C.ii. Microbial Removal	181
Summary and Conclusions	183
References	186
Arabic Summary	

LIST OF TABLES

Table No.	Title	Page
1a	Example for support used in selected catalytic reactions.	3
1b	The chemical composition of RHA after burning out at 973K for 6h.	6
2	An overview of the prepared solid catalysts and their pretreatments conditions.	29
3a	Adsorption - desorption isotherm for nitrogen at 77K on Ni/SiRI.	34
3b	Adsorption - desorption isotherm for nitrogen at 77K on Ni/SiRII.	35
3c	Adsorption - desorption isotherm for nitrogen at 77K on Ni/SiRIII.	36
3d	Adsorption - desorption isotherm for nitrogen at 77K on Ni/SiGI.	37
3e	Adsorption - desorption isotherm for nitrogen at 77K on Ni/SiGII.	38
3f	Adsorption - desorption isotherm for nitrogen at 77K on Ni/SiGIII.	39
4a	The value of d-spacing of Ni/SiRI solid.	42
4b	The value of d-spacing of Ni/SiRII solid.	42
4c	The value of d-spacing of Ni/SiRIII solid.	42
4d	The value of d-spacing of Ni/SiGI solid.	42
4e	The value of d-spacing of Ni/SiGII solid.	43
4f	The value of d-spacing of Ni/SiGIII solid.	43
5	Textural characteristic of the samples investigated.	59
6	The X- ray parameters of the prepared solids.	69
7	The TGA and DTA data for the prepared solids.	74
8	The DSC data of the investigated solids.	78
9	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiRI catalyst in flow system under normal pressure at 593 K.	87
10	Effect of space velocity on the catalytic conversion	88

Table No.	Title	Page
	of benzylol over Ni/SiRI catalyst in flow system	
	under normal pressure at 613 K.	
	Effect of space velocity on the catalytic conversion	
11	of benzylol over Ni/SiRI catalyst in flow system	89
	under normal pressure at 633 K.	
	Effect of space velocity on the catalytic conversion	
12	of benzylol over Ni/SiRI catalyst in flow system	90
	under normal pressure at 653K.	
	Effect of space velocity on the catalytic conversion	
13	of benzylol over Ni/SiRI catalyst in flow system	91
	under normal pressure at 637K.	
	Effect of space velocity on the catalytic conversion	
14	of benzylol over Ni/SiRII catalyst in flow system	92
	under normal pressure at 593 K.	
	Effect of space velocity on the catalytic conversion	
15	of benzylol over Ni/SiRII catalyst in flow system	93
	under normal pressure at 613 K.	
	Effect of space velocity on the catalytic conversion	0.4
16	of benzylol over Ni/SiRII catalyst in flow system	94
	under normal pressure at 633 K.	
. . .	Effect of space velocity on the catalytic conversion	_
17	of benzylol over Ni/SiRII catalyst in flow system	95
	under normal pressure at 653K.	
4.0	Effect of space velocity on the catalytic conversion	0.6
18	of benzylol over Ni/SiRII catalyst in flow system	96
	under normal pressure at 637K.	
10	Effect of space velocity on the catalytic conversion	0.7
19	of benzylol over Ni/SiRIII catalyst in flow system	97
	under normal pressure at 593 K.	
	Effect of space velocity on the catalytic conversion	
20	of benzylol over Ni/SiRIII catalyst in flow system	98
	under normal pressure at 613 K.	
21	Effect of space velocity on the catalytic conversion	99

Table No.	Title	Page
1 100	of benzylol over Ni/SiRIII catalyst in flow system under normal pressure at 633 K.	
22	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiRIII catalyst in flow system under normal pressure at 653K.	100
23	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiRIII catalyst in flow system under normal pressure at 637K.	101
24	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGI catalyst in flow system under normal pressure at 593 K.	107
25	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGI catalyst in flow system under normal pressure at 613 K.	108
26	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGI catalyst in flow system under normal pressure at 633 K.	109
27	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGI catalyst in flow system under normal pressure at 653K.	110
28	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGI catalyst in flow system under normal pressure at 637K.	111
29	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGII catalyst in flow system under normal pressure at 593 K.	112
30	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGII catalyst in flow system under normal pressure at 613 K.	113
31	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGII catalyst in flow system under normal pressure at 633 K.	114
32	Effect of space velocity on the catalytic conversion	115

Table No.	Title	Page
	of benzylol over Ni/SiGII catalyst in flow system under normal pressure at 653K.	
33	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGII catalyst in flow system under normal pressure at 637K.	116
34	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGIII catalyst in flow system under normal pressure at 593 K.	117
35	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGIII catalyst in flow system under normal pressure at 613 K.	118
36	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGIII catalyst in flow system under normal pressure at 633 K.	119
37	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGIII catalyst in flow system under normal pressure at 653K.	120
38	Effect of space velocity on the catalytic conversion of benzylol over Ni/SiGIII catalyst in flow system under normal pressure at 673K.	121
39	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRI catalyst in flow system under normal pressure on catalyst sample 0.5 h in benzylol vapour.	124
40	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRI catalyst in flow system under normal pressure on catalyst sample 1 h in benzylol vapour.	125
41	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRI catalyst in flow system under normal pressure on catalyst sample 1.5 h in benzylol vapour.	126

Table No.	Title	Page
42	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRI catalyst in flow system under normal pressure on catalyst sample 2 h in benzylol vapour.	127
43	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRI catalyst in flow system under normal pressure on catalyst sample 2.5 h in benzylol vapour.	128
44	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRII catalyst in flow system under normal pressure on catalyst sample 0.5 h in benzylol vapour.	129
45	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRII catalyst in flow system under normal pressure on catalyst sample 1 h in benzylol vapour.	130
46	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRII catalyst in flow system under normal pressure on catalyst sample 1.5 h in benzylol vapour.	131
47	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRII catalyst in flow system under normal pressure on catalyst sample 2 h in benzylol vapour.	132
48	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRII catalyst in flow system under normal pressure on catalyst sample 2.5 h in benzylol vapour.	133
49	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRIII catalyst in flow system under normal pressure on catalyst sample 0.5 h in benzylol vapour.	134

Table No.	Title	Page
50	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRIII catalyst in flow system under normal pressure on catalyst sample 1 h in benzylol vapour.	135
51	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRIII catalyst in flow system under normal pressure on catalyst sample 1.5 h in benzylol vapour.	136
52	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRIII catalyst in flow system under normal pressure on catalyst sample 2 h in benzylol vapour.	137
53	Effect of temperature on the catalytic conversion of benzylol on Ni/SiRIII catalyst in flow system under normal pressure on catalyst sample 2.5 h in benzylol vapour.	138
54	Effect of temperature on the catalytic conversion of benzylol on Ni/SiGI catalyst in flow system under normal pressure on catalyst sample 0.5 h in benzylol vapour	141
55	Effect of temperature on the catalytic conversion of benzylol on Ni/SiGI catalyst in flow system under normal pressure on catalyst sample 1 h in benzylol vapour.	142
56	Effect of temperature on the catalytic conversion of benzylol on Ni/SiGI catalyst in flow system under normal pressure on catalyst sample 1.5 h in benzylol vapour.	143
57	Effect of temperature on the catalytic conversion of benzylol on Ni/SiG Icatalyst in flow system under normal pressure on catalyst sample 2 h in benzylol vapour.	144