Clinical Utility of Serum Adipocyte Fatty Acid Binding Protein (A-FABP) in Type 2 Diabetes Mellitus Patients Complicated with Metabolic Syndrome

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

By

Safiya Mohamed Adel Hashem El-Fiky

M.B. BCh
Faculty of Medicine - Ain Shams University

Under Supervision of

Professor/ Eman Saleh El-Hadidi

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Maram Mohamed Maher Mahdy

Assistant Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Doctor/ Doaa Mostafa Awad Elzoghby

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor**/ Eman Saleh ElThadidi, Professor of Clinical Pathology, Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Professor/ Maram Mohamed Maher Mahdy, Assistant Professor of Internal Medicine, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr./ Dona Mostafa**Awad Elzoghby, Lecturer of Clinical Pathology,
Faculty of Medicine, Ain Shams University, for her great
help, active participation and guidance.

Also, I dedicate Ass. Professor/ Wessam & Sayed, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Safiya El-Fiky

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	1
Aim of the Study	12
Review of Literature	
Diabetes Mellitus and Metabolic Syndrome	13
Adipocyte Fatty Acid Binding Protein	59
Subjects and Methods	79
Results	109
Discussion	117
Summary	125
Conclusion	128
Recommendations	129
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Other Specific Types of Diabetes Me	llitus 18
Table (2):	Etiologic Classification of Diabetes I Adapted from WHO	
Table (3):	Risk Factors of Prediabetes and Diabetes	
Table (4):	Complications of Diabetes Mellitus	21
Table (5):	Various Definitions of the M. Syndrome	I etabolic
Table (6):	The ADA Recommendation for Diagnosis	
Table (7):	Biomarkers for screening and diag	
Table (8):	Reference Values of the OGTT in Non-Pregnant Women	
Table (9):	Criteria for diagnosis of MetS as mobefore	
Table (10):	Members of FABPS Family an Distribution:	
Table (11):	Calibration curve of hsCRP standard	d 92
Table (12):	Reagents supplied with A-FABP ELI	IZA Kit 95
Table (13):	Descriptive and Comparative Stat different Studied Parameters among Sub-Groups (Ia and Ib) and Contro (II) Using Kruskall-Wallis Test	g Patient ol Group

List of Tables (Cont...)

Table No.	Title	Page No.
Table (14):	Comparative Statistics between Sub-Comparative Patients without Metabolic Syversus Group II (Control Group) and Sources Group (II) as regard different Parameters Using Wilcoxn Rank Sum Non Parametric Data	yndrome) ub-group yndrome) Studied Test for
Table (15):	Comparative Statistics between Sub-Comparative Statistics between Sub-Comparative Patients with Metabolic Syversus Sub-Group Ia (Diabetic Patients Metabolic Syndrome) as regard different Parameters Using Wilcoxn Rank Sum Non Parametric Data	yndrome) s without t Studied . Test for
Table (16):	Statistical Correlation between Test and different Studied Param Sub-Group Ib (Diabetic Patient Metabolic Syndrome) Using Sperman Correlation Test for Parametric Data	eters in s with Ranked r Non
Table (17):	Stepwise Logistic Multiregresion Ana different Studied Parameters Using as Dependent variable	Groups
Table (18):	Diagnostic Performance of A-FABP, Their Combined Use for Discrimbetween Sub-Group Ib (Diabetic with Metabolic Syndrome) and Coub-Group Ia (Diabetic Patients Metabolic Syndrome) with Group II Group)	ninating Patients ombined without (Control

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Signal transduction and insulin action	on23
Figure (2):	Mechanisms of insulin resistance	25
Figure (3):	Pathophysiology of Hyperglycen increased circulating fatty acids in DM	n type 2
Figure (4):	Simplified hypothetical diagram metabolic syndrome	
Figure (5):	Proposed mechanisms for the clust MetS traits and its complications	•
Figure (6):	Schematic diagram for effect of i visceral obesity	
Figure (7):	Ribbon and domain structure of A- F	'ABP 63
Figure (8):	Secretion of A-FABP in association with	lipolysis 64
Figure (9):	Functions of A-FABP in the adipo macrophage	•
Figure (10):	Possible action of circulating A-F cardiovascular system	
Figure (11):	Inhibitors of A- FABP in adipocy macrophages with its effect on meta cardiovascular diseases	bolic and
Figure (12):	Sandwich enzyme-linked immun assay (ELISA)	
Figure (13):	Serial dilution of A-FABP standard.	96
Figure (14):	A-FABP levels in ng/mL in differengroup	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (15):	ROC curve analysis showing performance of TG, A-FA combination for discriminating from combined Sub-group Is (Control Group)	BP and their ng Sub-group Ib a and group II

List of Abbreviations

Abb.	Full term
1.5AG	1, 5 anhydroglucitol
	a-adenosine triphosphate -binding cassette A1
	Adenyl cyclase protein kinase A
	American Diabetes Association
	Adipocyte fatty acid binding protein
	Adaptor protein 1
	Adenosine Triphosphate
	Adult Treatment Panel III
	Area under the curve
	Basic fibroblast growth factor
	Body mass index
<i>CE</i>	Cholesterol Esterase
<i>CRP</i>	C- reactive protein
CVD	Coronary vascular diseases
DKA	Diabetes Ketoacidosis
<i>DM</i>	Diabetes mellitus
DM2	$Type\ 2\ DM$
ELISA	Enzyme-linked immunosorbent assay
eNOS	Endothelial nitric oxide synthase
<i>ER</i>	Endoplasmic Reticulum
	Electrospray ionization
	Extracellular vesicles
FA	Fructosamine
	Free fatty acids
	Glucose-6-phosphate
	Glycated albumin

List of Abbreviations (Cont...)

Abb.	Full term
GAD	Glutamic acid decarboxylase
	· ·
	Guanylyl cyclase - protein kinase G
	Gestational diabetes mellitus
<i>GLUT4</i>	Glucose transporter 4
GPLD1	Glycosylphosphatidylinositol-specific phospholipase D1
HbA1c	Glycated hemoglobin
HDL-C	High-density lipoprotein-cholesterol
<i>HF</i>	Heart failure
<i>HHS</i>	Hyperglycemic hyperosmolar state
HLA	Human leucocytes antigen
HOMA-IR	Homeostasis model assessment of insulin resistance
<i>HPLC</i>	High-performance liquid chromatography (
<i>HRP</i>	Horseradish Peroxidase
HSL	Hormone sensitive lipase
<i>IDF</i>	International Diabetes Federation
<i>IEF</i>	Isoelectric focusing
<i>IFG</i>	Impaired fasting glucose
<i>IGF</i>	Insulin-like growth factor
<i>IGT</i>	Impaired glucose tolerance
<i>IKK</i>	Inhibitor kappa kinase
<i>IL-18</i>	Interleukin18
<i>IL-6</i>	Interleukin 6
<i>IR</i>	Insulin resistance
<i>IRS</i>	$ In sulin\ receptor\ substrate$

List of Abbreviations (Cont...)

Abb.	Full term
LDL-C	Low density lipoprotein - cholesterol
	L-alpha glycerylphosphorylcholine
	Liver X receptor- α
	Matrix-assisted laser desorption
	Mitogen-activated protein
	MBL associated serine protease
	Mannose Binding Lectin
	Metabolic syndrome
miRNA	microRNA
<i>MODY</i>	Maturity-onset diabetes of the young
	Mass spectrometry
	Tandem mass spectrometry
	Molecular weights
<i>NAD</i>	Nicotinamide adenine dinucleotide
NCEP	National Cholesterol Education Program
NF-Kβ	Nuclear factor-κB
<i>NPR-A</i>	Natriuretic peptide receptor-A (
<i>NPY</i>	Neuropeptide Y
<i>OD</i>	Optical Density
<i>OGTT</i>	Oral glucose tolerance test
<i>PAD</i>	Peripheral arterial disease
PAI-1	Plasminogen Activator Inhibitor-1
PCOS	Polycystic ovary syndrome
PI3K	Phosphatidy linositol - 3'-kinase
<i>PPAR-γ</i>	Peroxisome proliferator-activated receptor
	gama

List of Abbreviations (Cont...)

Abb.	Full term
RAAS	.Renin angiotensin- aldosterone system
ROC	.Receiver operating characteristic
ROS	.Reactive oxygen species
<i>SD</i>	.Stander deviation
SDS	.Sodium dodecyl sulfate
SDS-PAGE	.Sodium dodecyl sulfate -polyacrylamide gel electrophoresis
<i>TG</i>	.Triglyceride
<i>TGF-β</i>	.Transforming growth factor beta
<i>Th1</i>	.T-helper 1
<i>Th2</i>	.T-helper 2
THBS1	.Thrombospondin 1
TLR4	.Toll Like Receptor 4
<i>TMB</i>	.3, 3', 5, 5'-Tetramethylbenzidine
TNF- α	. Tumor necrosis factor-α
VEGF-A	.Vascular endothelial growth factor-A
VEGFR2	.Vascular endothelial growth factor receptor-2
<i>VLDL-C</i>	.Very low density lipoprotein- cholesterol
<i>WC</i>	.Waist circumference.
<i>WHO</i>	. World Health Organization
α -KB	. α -Keto butyrate
<i>α-HB</i>	.Alpha-hydroxybutyrate

Abstract

Objective: The adipocyte fatty acid-binding (A-FABP) has been described as a biomarker for adiposity and obesity-related disease. The aim of this study was to assess the association between fasting serum A-FABP level and the development of metabolic syndrome (MetS) among type 2 DM patients.

Methods: Fasting blood samples were obtained from 60 type 2 diabetic patients for assessment of serum A-FABP level (30 subjects without MetS and 30 subjects with MetS) compared to 30 healthy control subjects recruited from Endocrinology Department, Ain Shams University Hospitals. A-FABP protein was assayed using ELISA technique, MetS component (waist circumference, fasting serum glucose, triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and blood pressure), as well as homeostasis model assessment of insulin resistance (HOMA-IR) and highly sensitive C-reactive protein (hsCRP) were assayed for all subjects.

Results: Diabetic persons who had MetS had significantly higher serum A-FABP levels than either without MetS or healthy controls [Median (25-75 percentiles): 10.5(8.25-14.25); 3.4(0.20-6.00) and 1.5(0.78-2.63) respectively; P<0.01). However (HOMA-IR) and hsCRP did not show significant difference between diabetic patients with MetS versus diabetic patients without MetS (P>0.05).

Conclusions: Our results indicate that serum A-FABP level is an early marker for the development of MetS in type 2 DM patients, thus its assessment could be beneficial in diagnosis of MetS.

Keywords: A-FABP, Type 2 DM, Metabolic Syndrome, HSCRP, HOMA-IR

Introduction

of ype 2 diabetes mellitus (Type 2 DM) is the most common form of diabetes mellitus and accounts for over 90% of all cases. It was formerly referred to as non-insulin-dependent diabetes mellitus. Type 2 diabetes mellitus is adult onset, is characterized by insulin resistance, and may also be accompanied by beta cell dysfunction causing insulin deficiency (*Dasgupta and Wahed*, 2013). Type 2 diabetes is significantly linked to obesity, a sedentary lifestyle, and aging. Genetic predisposition has also been established. The mechanism of type 2 diabetes involves increasing cellular resistance to insulin which results in a compensatory hypersecretion of insulin from the pancreatic beta cells that ultimately leads to a failure in insulin production (*Dasgupta and Wahed*, 2013).

Metabolic syndrome (MetS) is a cluster of least three of the five following medical conditions. (1)Abdominal central obesity waist circumference ≥ 102 cm (male), ≥ 88 cm (female). (2) Dyslipedemia: TG ≥ 150 mg/dL. (3) Dyslipidemia: HDL-C < 40 mg/dL (male), < 50 mg/dL (female). (4) Blood pressure $\geq 130/85$ mmHg (or treated for hypertension). (5) Fasting plasma glucose ≥ 110 mg/dL (*Kaur*, *2014*).

Adipocyte fatty acid binding protein (A-FABP) is one of the most abundant proteins in mature adipocytes. It is known for the ability to bind fatty acids and related compounds

throughout various cellular compartments including peroxisomes, mitochondria, endoplasmic reticulum, lipid droplets and nucleus (Fantuzzi, 2015).

A-FABP has been shown to affect insulin sensitivity, lipid metabolism and lipolysis in animal studies. Furthermore, studies also found that A-FABP is a key mediator for the obesity-related cardiovascular disease (Xu and Vanhoutte, 2012).

Recent evidence demonstrates circulating A-FABP level to be an independent predictor of the development of metabolic syndrome after adjustment for the effects of adiposity and the possible pharmacological utility (Furuhashi et al., 2015).