

Design and Production Engineering

Production rescheduling optimization model

A Thesis submitted in partial fulfilment of the requirements of the degree of Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Moaz Magdy Tawfiq Mohamed

Bachelor of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2013

Supervised By

Prof. Amin M. K. El-Kharbotly

Dr. Yomna M. Sadek

Cairo - (2019)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Design and Production

Production rescheduling optimization model

by

Moaz Magdy Tawfiq Mohamed

Bachelor of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2013

Examiners' Committee

Name and Affiliation	Signature
Prof. Amin Mohamed Kamel El-Kharbotly	
Design and Production, Ain Shams University	
Prof. Nahid H. Afia	
Design and Production, Ain Shams University	
Prof. Mervat A. Badr	
Mechanical Engineering, National Research Centre	

Date:21 February 2019

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Moaz Magdy Tawfiq Mohamed

		•	S	i	٤)	n	2	ı	t	u	r	e				
											•						

Date:21 February 2019

Researcher Data

Name : Moaz Magdy Tawfiq Mohamed

Date of birth : Jan 01, 1991

Place of birth : Shubra Al Khaymah, Al Qalyubia, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Design and Production Engineering

University issued the degree : Ain Shams

Date of issued degree : Jul 28, 2013

Current job :

Thesis Summary

Production rescheduling optimization model

In the dynamic environment of production, the task of managing and controlling production systems becomes more difficult as a result of internal disruptions like machine breakdowns, and external disruptions (such as urgent jobs). Once the initial production schedule is disrupted, a corrective action should be taken to minimize the negative effects of disruption on the overall performance. Some of the practical strategies to handle disruptions are: working for overtime, outsourcing some of the production tasks and production rescheduling. Rescheduling refers to the process of updating an existing production schedule in response to disruptions or other changes to maintain schedule performance.

Production rescheduling studies considered the rescheduling problem from different perspectives. Some studies are focused on the nature of the scheduling environment which is static or dynamic scheduling. Some are concerned with the strategy of considering the uncertainty in the production system. Some are concerned with the policy that should to be followed to respond to disruptions whenever occur. Some are concerned with the method by which the disrupted schedule would be updated. Some are dedicated to find a solution for a specific machine environment problem under a specific set of assumptions. Some are concerned with finding appropriate performance measures for the rescheduling problem. Others are concerned with the optimization tool that is used to find an optimal or near-optimal solution.

Most of rescheduling studies consider static set of jobs to be rescheduled upon disruption occurrence. Two alternative policies are mostly followed to respond to disruptions either upon occurrence, event-driven policy, or periodic policy to be performed at equally spaced time intervals. The method of updating a disrupted schedule by generating a completely new schedule has been proven to be superior to other methods by computational results. The disruption of urgent job arrival has been considered in most of rescheduling studies. Despite its importance, the single machine environment was rarely considered in the rescheduling studies.

The objective of this study is to answer the following questions: Is rescheduling needed when disruptions occur? If yes, when to reschedule? and how often?

This study followed a reactive strategy to handle unexpected disruptions in a single machine environment such that the unexpected disruptions are not accounted for while generating the initial schedule. Instead, the schedule is revised when unexpected disruptions occur according to the followed rescheduling policy. The performance of different rescheduling policies is compared in terms of the total tardiness and total cost at different disruption parameters. The disruption parameters considered in this study are: disruption duration, time of disruption occurrence and the number of disruptions.

In this study, a genetic algorithm is used to generate the initial schedule and the updated schedules.

Since production rescheduling may be affected by many factors and our concern is to estimate the effect of these factors on the rescheduling decision, as well as the effect of possible interactions between these factors. Using Minitab® statistical software, a general factorial experiment, in which more than two factors are considered and each factor has different number of levels, is designed to study the performance of different rescheduling policies. In each complete trial of the experiment, all possible combinations of all levels of the factors are investigated. The experiment includes the following factors: 1) rescheduling policy. 2) time of disruption occurrence. 3) Number of disruptions during the planning period. 4) Disruption duration. 5) jobs' processing time represented by different number of jobs to be scheduled in the same planning horizon. and 6) the optimization objective (minimum total tardiness or minimum total cost).

The results are first analyzed using ANOVA to identify parameters with statistically significant variation. Then the results are further analyzed and discussed using different graphical methods.

The computational results showed that the timing of the occurrence of disruption as related to scheduling horizon has a major effect on determining the best rescheduling policy. Event-driven policy is found to be superior to other policies for short infrequent disruptions. On the other hand, the periodic rescheduling policy is found to be superior to other policies for long and/or frequent disruptions.

Key words: Single machine, rescheduling, event-driven rescheduling, periodic rescheduling, rescheduling frequency.

Acknowledgment

I would like to express my gratitude to the supervision team, Prof. Amin El-Kharbotly, with his experience, support, motivation, and guidance to this interesting point, and throughout the work, and Dr. Yomna, with her sincere support, accurate comments, close supervision and useful advices in the research and in many other things as well.

Table of Contents

CHAPTER 1: INTRODUCTION	- 18
1.1 Organization of thesis	19 -
CHAPTER 2 : LITERATURE REVIEW	20
2.1 Introduction	20 -
2.2 Basic concepts of rescheduling	20 -
2.2.1 Common rescheduling terms	20 -
2.2.2 Rescheduling factors	20 -
2.3 CLASSIFICATION AND REVIEW OF RESCHEDULING STUDIES	21 -
2.3.1 Rescheduling strategies	21 -
2.3.2 Rescheduling environment	24 -
2.3.3 Rescheduling methods	25 -
2.3.4 Rescheduling policies	27 -
2.3.5 Machine environment	29 -
2.3.6 Performance measures	32 -
2.3.7 Rescheduling tools	37 -
2.3.8 Summary of rescheduling literature	39 -
2.4 OTHER APPLICATIONS FOR RESCHEDULING	42 -
2.5 FINDINGS FROM LITERATURE	43 -
2.6 Objectives of this study	43 -
CHAPTER 3: PROPOSED PRODUCTION RESC.	HEDULING MODEL - 45
3.1 Introduction	45 -
3.2 PROBLEM DESCRIPTION	45 -
3.2.1 Problem parameters	48 -
3.2.2 Objective function	48 -
3.3 THE PROPOSED MODEL	49 -
3.3.1 Model Description	49 -
3.3.2 Model Assumptions	- 50 -

3.3.3 Jobs' characteristics	51 -
3.3.4 Disruption parameters	52 -
3.3.5 Determination of rescheduling time	53 -
3.4 GENERATING THE INITIAL SCHEDULE	53 -
3.5 GENERATING UPDATED SCHEDULE	54 -
3.6 MODEL MATHEMATICAL FORMULATION	60 -
3.7 THE GENETIC ALGORITHM (GA)	63 -
3.7.1 Crossover operators	63 -
3.7.2 Mutation operator	66 -
3.7.3 Stopping criterion	66 -
CHAPTER 4: RESULTS AND DISCUSSION	67 -
4.1 Introduction	67 -
4.2 Design of experiments	67 -
4.3 PERFORMANCE MEASURES	70 -
4.3.1 Total tardiness	71 -
4.3.2 Total cost	71 -
4.4 GENETIC ALGORITHM PARAMETERS	72 -
4.5 COMPUTATIONAL RESULTS AND DISCUSSION	72 -
4.5.1 Analysis of Variances (ANOVA)	74 -
4.5.2 First set of experiments' results	93 -
4.5.3 Second set of experiments' results	98 -
4.6 Sensitivity analysis	102 -
4.6.1 Due date tightness	102 -
4.6.2 Cost coefficients	104 -
CHAPTER 5: CONCLUSION AND FUTURE WORK	107
5.1 CONCLUSION	107
5.2 FUTURE RESEARCH DIRECTION	108
REFERENCES	110
APPENDIX A: EXPERIMENTAL TRIALS	116

List of Figures

Figure 2.1: Classification of rescheduling studies 22 -
Figure 2.2: Periodic rescheduling policy. — - 27 -
Figure 2.3: Event-driven rescheduling policy
Figure 3.1: Problem description projected on the classification of rescheduling studies 47 -
Figure 3.2: Right-shifting model flow chart55 -
Figure 3.3 (a) Initial schedule is disrupted during J6 processing. (b) Unprocessed jobs' start time is right-shifted
by disruption duration 56 -
Figure 3.4: Event-driven rescheduling model flow chart 57 -
Figure 3.5 (a) Initial schedule is disrupted during J6 processing. (b)Unprocessed jobs are rescheduled to optimize objective of concern. — - 58 -
Figure 3.6: Periodic rescheduling model flow chart 59 -
Figure 3.7 (a) Initial schedule is disrupted during J6 processing. (b) Unprocessed jobs' start time is right-shifted
by disruption duration. (c) At the rescheduling time, unprocessed jobs are rescheduled 60 -
Figure 3.8 Chromosome representation 63
Figure 3.9 precedence preservative crossover operator example 64 -
Figure 3.10 Set-partition crossover operator example 65 -
Figure 3.11 Inversion mutation operator 66 -
Figure 4.1: Residuals plots for original total tardiness results for first set of experiments 77 -
Figure 4.2: Box Cox transformation factor plot for total tardiness results for first set of experiments 77 -
Figure 4.3: Residuals plot for transformed total tardiness results for first set of experiments
Figure 4.4: Residuals plots for original total cost results for first set of experiments 81 -
Figure 4.5: Box Cox transformation factor plot for total cost results for first set of experiments 82 -
Figure 4.6: Residuals plot for transformed total cost results for first set of experiments 83 -
Figure 4.7: Residuals plots for original total tardiness results for second set of experiments 86 -
Figure 4.8: Box Cox transformation factor plot for total tardiness results for second set of experiments 86 -
Figure 4.9: Residuals plot for transformed total tardiness results for second set of experiments 87 -
Figure 4.10: Residuals plots for original total cost results for second set of experiments 90 -
Figure 4.11: Box Cox transformation factor plot for total cost results for second set of experiments 91 -
Figure 4.12: Residuals plot for transformed total cost results for second set of experiments 91 -
Figure 4.13: Total tardiness for different rescheduling policies at different disruption durations and different
time of disruption occurrence and problem size 25 jobs with minimum total tardiness as an objective 94

_

Figure 4.14: Total cost resulted from different rescheduling policies at different disruption durations at	nd
different time of disruption occurrence and problem size 25 jobs with minimum total tardiness a	s an
objective.	94 -
Figure 4.15: Total Cost elements result for periodic rescheduling policy (R=8) subject to three long dis	sruptions,
25 jobs problem and minimum total tardiness as the objective	95 -
Figure 4.16. Total tardiness for different rescheduling policies with long middle disruption and different	nt
problem size	96 -
Figure 4.17. Total tardiness for different rescheduling policies with short middle disruptions and differ	ent
problem sizes.	96 -
Figure 4.20. Total cost resulted from different rescheduling policies at different disruption durations are	nd
different time of disruption occurrence and problem size 25 job with minimum total cost as an o	bjective
97 -	
Figure 4.21: Total tardiness for different rescheduling policies at different disruption durations and dif	ferent
time of disruption occurrence and problem size 25 job with minimum total cost as an objective.	97 -
Figure 4.22. Total cost resulted from different rescheduling policies at short middle disruption for different rescheduling policies.	erent
problem size	98 -
Figure 4.23. Total cost resulted from different rescheduling policies at long middle disruption for diffe	rent
problem size	98 -
Figure 4.18. Percentage improvement in total tardiness compared to right-shifting policy due reschedu	ling for
different rescheduling frequency at different values for total disruption time.	99 -
Figure 4.19. Total tardiness resulted from different rescheduling frequencies for 25 jobs problem at di	fferent
number of disruptions with the same total disruption duration	100 -
Figure 4.24. Total cost of rescheduling for different rescheduling frequencies at different values of	
scheduling/tardiness cost ratio for 25 jobs problem.	101 -
Figure 4.25: Total cost of different rescheduling policies under different number of disruptions with the	e same
total disruption duration	102 -
Figure 4.26. Total tardiness changes due to changing due date tightness factor with long middle disrup	tion for
25 jobs problem	103 -
Figure 4.27. Effect of changing tardiness cost coefficient on total cost for different rescheduling polici	es at long
middle disruption and 10 job problem.	105 -
Figure 4.28. Effect of changing WIP holding cost coefficient on total cost for different rescheduling po	olicies at
long middle disruption and 10 job problem.	106 -
Figure 4.29. Effect of changing expediting cost coefficient on total cost for different rescheduling policy	cies at
long middle disruption and 10 job problem	106 -

List of Tables

Table 2.1: Summary of literature.	- 40 -
Table 2.1 (Cont.): Summary of literature	- 41 -
Table 4.1: Design of the first set of experiments (effect of rescheduling policy)	- 69 -
Table 4.2: Design of the second set of experiments (effect of rescheduling frequency)	- 70 -
Table 4.3: Cost coefficients	- 71 -
Table 4.4: Genetic algorithm parameters	- 72 -
Table 4.5: 10 jobs' processing time and due dates	- 73 -
Table 4.6: 25 jobs' processing time and due dates	- 73 -
Table 4.7: ANOVA table for first set of experiments' total tardiness results	- 80 -
Table 4.8: ANOVA table for first set of experiments' total cost results	- 84 -
Table 4.9: ANOVA table for second set of experiments' total tardiness results	- 88 -
Table 4.10: ANOVA table for second set of experiments' total cost results	- 92 -
Table 4.11: Effect of due date tightness and rescheduling policy on tardiness	104 -

List of Abbreviations

AWI-J Active Wilkerson Irwin – Job

AWI-O Active Wilkerson Irwin – Operation

AOR Affected Operations Rescheduling

ATC Apparent Tardiness Cost

ACO Ant Colony Optimization

ANOVA Analysis of Variance

BB Branch and Bound

BS Beam Search

CFJIT Critical First Job Idle Time

CPU Central Processing Unit

DHS Discrete Harmony Search

DOE Design of Experiments

ED Event-Driven

EDD Earliest Due Date

FMS Flexible Manufacturing System

FJR Fit Job Repair

FBS Filtered Beam Search

GA Genetic Algorithms

GDP Ground Delay Program

HFBS Heuristic Filtered Beam Search

IG Iterated Greedy

LP Linear Programming

LTL Less than Truck Load

LEPST Longest Expected Processing with Setup Time

MCR Minimum Critical Ratio

MLEPST Modified Longest Expected Processing with Setup

Time

MDD Modified Due Dates

MAIT Maximum Allowable Idle Time

MWCTD Minimum Weighted Completion Time Difference

MSB Modified Shifting Bottleneck

MTBF Mean Time Between Failures

MTTR Mean Time to Repair

MPS Master Production Schedule

NP Non-Polynomial

PR Periodic Rescheduling

RSR Right Shift Repair

RS Right Shifting

SPT Shortest Processing Time

SOPT Shortest Operation Processing Time

TR Total Rescheduling

TWK Total Work content

VNS Variable Neighborhood Search

WSPT Weighted Shortest Processing Time

WIP Work-In-Process

WSPT Weighted Shortest Processing Time

List of Symbols

a The lower bound of time of disruption occurrence.

b The upper bound of time of disruption occurrence.

 C_i Completion time of job (j) [in hrs.].

 $C_{[k]}(v)$ Completion time of job k in schedule v [in hrs.].

 $C_{tardiness}$ Total tardiness cost.

 C_{WIP} Total WIP holding cost.

 $C_{expediting}$ Total material expediting cost.

 $C_{sch/res}$ Total computational cost of scheduling/rescheduling.

 $C_{earliness}$ Total earliness cost.

 d_j Due date of job (j) [in hrs.].

 DS_d Start time of disruption (d) [in hrs.].

 DE_d End time of disruption (d) [in hrs.].

 DL_d Duration of disruption (d) [in hrs.].

e The lower bound of disruption duration.

h Upper bound of jobs' processing time.

j The job number, where j = 1, ..., N.

 J_o Set of jobs to be initially scheduled, where $J_o = \{1, ..., N\}$.

k The disrupted job.

I Lower bound of jobs' processing time.

M The makespan of the initial schedule [in hrs.].

M' The makespan of the actually realized schedule [in hrs.].

 P_j Processing time of job (j) [in hrs.].