High MELD score in predicting shortterm mortality after living donor liver transplantation

Thesis Submitted for Partial Fulfilment of the M.Sc. of General Surgery

> By Ahmed Hamdy Abdeen M.B.B.CH. Tanta University,

Supervised by
Prof. Dr. Mohamed Fathy Abdel Ghaffar
Professor of General Surgery
Faculty of Medicine - Ain Shams University

Prof. Dr. Hani Rafiq Wakim Assistant Professor of General Surgery Faculty of Medicine - Ain Shams University

Dr. Kamal Mamdouh Kamal
Lecturer of general surgery,
Faculty of Medicine - Ain Shams University

Faculty of Medicine, Ain Shams University 2018

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Fathy Abdel Ghaffar,**Professor of General Surgery Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Hani Rafiq Wakim,** Assistant Professor of General Surgery Faculty of Medicine - Ain Shams University, for his kind supervision throughout this work.

Lastly, I would like to express my great thanks to **Dr. Kamal Mamdouh Kamal,** Lecturer of General Surgery,
Faculty of Medicine, Ain Shams University, for his kind
care, continuous supervision, valuable instructions,
constant help and great assistance throughout this work
and everyone who participated by one way or another in
making this work possible.

Ahmed Abdeen

List of content

List of content	3
List of Tables.	4
List of Figures.	6
List of Abbreviations.	8
Introduction	10
Aim of the Work	12
Review of Literature	
Liver transplantation in literature	13
Indications for liver transplantation in adults	22
Post-liver transplantation complications	47
The Model for End-Stage Liver Disease	66
Patients and Methods	77
Results	82
Discussion	98
Conclusion	103
References	104
Arabic Summary	138

List of Tables

Table No	o. Title	Page No.
Table (1):	Historical milestones of liver transplantation	15
Table (2):	HCC listing criteria	28
Table (3):	Allograft dysfunction and surgical complications Occurring in the immediate postoperative period	50
Table (4):	Liver Disease: Features of Current Definitions/Scores	73
Table (5):	Demographic data results	82
Table (6):	Our cases according to CHILD and MELD scoring system	84
Table (7):	Different liver diseases percentage among both study groups	85
Table (8):	Actual Graft weight and GWRW in both study groups	87
Table (9):	comparison between the two groups concerning operation time, Intra operative blood transfusion, warm and cold ischemic time	88
Table (10)	: Early complications in recipients.	90
Table (11) :	Early Mortality in recipients	93

Table (12): Recipient factors as predictors of Early Mortality95	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The number and ratio of LT (liver transplant) candidates	72
Figure (2 A	A graph showing a comparison between the mean age of the two study groups	83
Figure (3):	A graph showing a comparison between the mean weight of the two study groups	83
Figure (4):	A graph showing a comparison between both study groups concerning CHILD and MELD scoring systems.	84
Figure (5):	A pie-chart showing different liver diseases percentage among group A	86
Figure (6):	A pie-chart showing different liver diseases percentage among group B	87
Figure (7):	Comparison between warm and cold ischemic time	89
Figure (8):	A graph showing causes of complications in group A	94
Figure (9):	A graph showing causes of complications in group B	94
Figure (10): Actual graft weight between group A and group B	96
Figure (11)): GRWR between group A and group B	96

Figure (12): Operation time of liver transplantation operation	
between group A and group B	97
Figure (13): Blood transfusion during liver transplantation operation between group A and group B	

List of Abbreviations

Abb	Full term
AGW	Actual graft weight
BMI	Body mass index
BSA	Body surface area
CT	Computed tomography
EGW	Estimated Graft weight
FLR	Future liver remnant
FRL	Future remnant liver
GRWR	Graft-to-recipient weight ratio
IVC	Inferior vena cava
LDLT	Living donor liver transplantation
MRI	Magnetic resonance imaging
MHV	Middle hepatic vein
MELD	Model for end-stage liver disease
PVE	
PVF	Portal venous flow
PVP	Portal venous pressure
PCS	Portocaval shunt
PHLF	Post-hepatectomy liver failure

PT	Prothrombin time
RLV	
SFSG	Small-for-size graft
SFSS	Small-for-size syndrome
US	Ultrasound

INTRODUCTION

The number of patients awaiting liver transplantation (LT) has increased progressively in the past decade (Gibbons et al., 2000).

However, the shortage of cadaveric donors and the incremental death rate in the potential recipients has forced the transplant community to search for more effective strategies for expanding the graft pool (Soloff, 1995). Thus, suboptimal donors or grafts, split-liver transplantation (SLT) and living-related liver graft donation have contributed to enlarge the donor pool (Loinaz and González, 2000).

Recently, the point of view that waiting time for LT should be discontinued in favour of more equitable organ allocation strategies based on medical characteristics and disease prognosis has become attractive *(Gibbons et al., 2000)*.

In 2000, a Model for End-Stage Liver Disease (MELD) was developed at the Mayo Clinic as a continuous scale to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) (Malinchoc et al., 2000).

In 2001, the MELD score was extended as a potential disease severity score for patients with end-stage liver disease awaiting LT

(Kamath et al., 2001). Although the MELD score was effective in the prediction of patient mortality awaiting liver transplantation, its predictive value for post-transplantation mortality remained fairly difficult to achieve, suggesting the need for further analyses (Onaca et al., 2003).

In this retrospective study, the MELD score was compared in patient with (15-20) MELD score and \geq 20 MELD score.in order to evaluate its potential predictive value for short-term mortality after liver transplantation in both patients and grafts.

AIM OF THE WORK

In the present study we investigated the predictive value of the MELD score for short-term patient survival in comparison to patient with (15-20) MELD score, and \geq 20 MELD score.

LIVER TRANSPLANTATION IN LITERATURE

LIVER TRANSPLANTATION IN LITERATURE

History & evolution

The history of liver transplantation began with experimental transplants performed in dogs in the late 1950s. The first deceased donor liver transplant (DDLT), also known as orthotopic liver transplant (OLT), was attempted in humans was in 1963 by Thomas Starzl. The recipient was a 3-year-old boy with biliary atresia who unfortunately died of haemorrhage (Table 1). The first successful liver transplant was in 1967, again by Starzl at the University of Colorado Health Sciences Center, Denver. Yet, for the next 10 years, liver transplants remained essentially experimental, with survival rates well below 50%. Still, advances in the surgical procedure and in anesthetic management continued to be made during that time (*United Network for Organ Sharing (UNOS) data. UNOS Web site 2009*).

The major breakthrough for the field came in the early 1980s, with the introduction and clinical use of the immunosuppressive agent cyclosporine. Patient survival dramatically improved, and liver transplantation was soon being recognized as a viable therapeutic option. Results continued to improve through the 1980s, due to ongoing improvements in immunosuppression, critical care management, surgical technique, and preservation solutions. The late 1980s and 1990s a dramatic

increase in the number of liver transplants, and an even greater increase in the number of patients waiting for a transplant. This in turn increased waiting times as well as mortality rates for those waiting their turn for transplant (*Melancon and Fishbein*, 2013).

Year	Description
1955	First article in the literature of auxiliary liver transplantation
1958-1960	Formal research programs of total hepatectomy and liver replacement in dogs
1963	Azathioprine prednisone cocktail introduced and recognition of organ induced tolerance
1963	First human liver transplantation (university of Colorado)
1965	First clear evidence of hepatic tolerogenicity
1966	First liver xenotransplantation on July 15, 1966 (chimpanzee donor)
1966	Clinical introduction of anti lymphocyte globulin (ALG)
1966-1970	Proof that human leukocyte antigen matching would not be a major factor in liver transplantation
1967	First successful human liver replacements under Azathioprine, prednisone and ALG
1967-1968	Acceptance of brain death concept
1976	Improved liver preservation permits long distance procurement
1979	Cyclosporine introduced for organ transplantation including two liver recipients
1980	Cyclosporine steroid cocktail introduced clinically
1981	80% 1 year survival reported using cyclosporine prednisone
1983	Introduction of pump driven venovenous bypass without anticoagulation
1983-1984	US consensus development conference conclusion that liver transplantation is a service is followed by rapid proliferation of transplant centers worldwide
1987	University of Wisconsin solution improves liver and other organ preservation
1989	Clinical introduction of FK506 based immunosuppression
1990	First successful use of live liver donors (left side fragments)
1994	Live donor transplantation of right side liver fragments

Table (1): History of liver transplantation (Busuttil and Klintmalm, 2005).