

Relation between fluid balance and incidence of morbidity and mortality rates in critically ill patients prospective observational study

Thesis

Submitted in Partial Fulfillment for the Master Degree in General Intensive Care

By Mena Gerges Abdoh Gerges

MBB.Ch. – Faculty of Medicine, Zagazig University

Under the Supervision of

Prof. Dr. Hesham Mohammed Mahmoud Elazzazi

Professor of Anaesthesia, Intensive Care and Pain management Faculty of Medicine, Ain Shams University

Prof. Dr. Mayar Hassan Said Ahmed Elsersi

Assistant Professor of Anaesthesia, Intensive Care and Pain management Faculty of Medicine, Ain Shams University

Dr. Sameh Ahmed Refaat Mustafa

Lecturer of Anaesthesia, Intensive Care and Pain management Faculty of Medicine, Ain Shams University

Dr. Mohamed Abd El-Monem Saeed

Lecturer of Critical Care and Emergency Medicine Faculty of Medicine, Helwan University

Faculty of Medicine Ain Shams University 2018

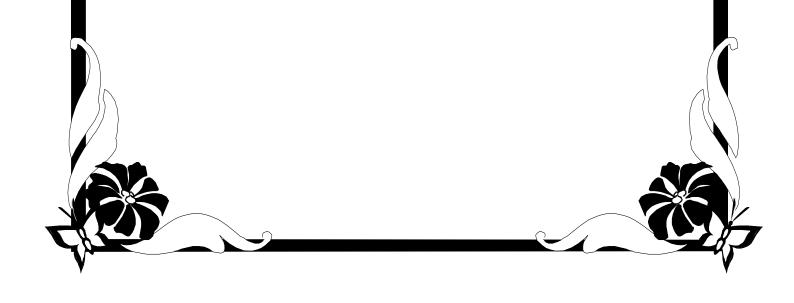
"وَمَا تَوْفِيقِي إِلَّا بِاللَّهِ عَلَيْهِ تَوَكَّلْتُ وَإِلَيْهِ أُنِيبُ" (ایه ۸۸ سورة هود)

" أَمَّا أَنَا فَعَلَى رَحْمَتِكَ تَوَكَّلْتُ " (من ١٣:٥)

ACKNOWLEDGEMENT

First, and for most thanks to "ALLAH", the most merciful, gracious and compassionate, whose magnificent help is the main factor in every thing we can do in life.

I found no words by which I can express my extreme thankfulness, and deepest gratitude to *Prof. Hesham Mohammed Mahmoud Elazzazí*, *Professor of Anaesthesia, Intensive Care and Pain management, Faculty of Medicine, Ain Shams University* for suggesting the subject, his continuous encouragement, sustained unlimited support, wise valuable instructions and suggestions through this work. I feal greatly honored for working under his supervision.


It is difficult to express my deep appreciation and my great thanks to *prof. Mayar Hassan Saíd Ahmed Elsersí*, Assistant Professor of Anaesthesia, Intensive Care and Pain management ,Faculty of Medicine, Ain Shams University who guided me with patience and kindness, sacrificing time and effort to overcome all the obstacles, with sincere help and encouragement.

I would like to express my profound gratitude and deep appreciation to *Dr. Sameh Ahmed Refaat Mustafa*, Lecturer of Anaesthesia, Intensive Care and Pain management, Faculty of Medicine, Ain Shams University and *Dr. Dr. Mohamed Abd El-Monem Saeed*, Lecturer of Critical Care and ER, Faculty of Medicine, Helwan University without their precious advice and uidance, this work wouldn't have come to light.

I am also grateful to **all the patients** who agreed to participate in this project, without whom it would not have been completed.

Last but not least I would like to express my feelings of admiration, love and respect to my wife and my parents without their sacrifice and unconditioned love; I would have never been able to go a further step in my life. I would like to thank all my professors, staff members and colleagues in Critical care and ER department for their help, support and continuous encouragement. I also would like to extend my thanks to the nursing Staff for their irreplaceable help in collection of blood sample.

Mena gerges

I dedicate this thesis

To my
Little angels
Marly & Martin
Beloved wife,
Great father,
Devoted mother,
Wonderful brothers

Who always believed in me more than I have ever believed in myself

To my friends

Who did for me much more than I can ever do for myself

And to every one

Who gives me the power to Withstand

List of contents

Subject	Page
List of tables	I
List of figures	II
List of abbreviations	IV
Introduction	1
Aim of work	3
Review of literature	5
Chapter 1: Physiology of fluid balance	5
Chapter 2: Types of infused fluids	19
Chapter 3: Enteral nutrition	27
Chapter 4: Fluid Responsiveness	32
Chapter 5 : Fluid management in intensive care patients	39
Patient and methods	49
Results	53
Discussion	71
Summary	77
Conclusion	79
Recommendations	81
References	83

LIST OF TABLES

Table	Subject	Page
No.		
1	Effect of hot weather and exercise on water loss in adults (ml/day)	7
2	Abnormalities of Body Fluid Volume Regulation: Hyponatremia and Hypernatremia	14
3	Examples of Plasma Components for Clinical Use	20
4	Causes of absolute and relative hypovolemia	39
5	Consequences of fluid overload in organ systems	44
6	Baseline characteristics of studied patients	55
7	ICU values of studied patients at admission	57
8	ICU values of studied patients after 4 days	58
9	Mortality rates in study groups	63
10	Subgroup analysis of ICU values of studied patients at admission	64
11	Subgroup analysis of ICU values of studied patients after 4 days	65
12	Comparison between survivors and non-survivors in clinical aspects	66
13	Binary logistic regression analysis of mortality and associated factors	70
14	Fluid balance as predictor of mortality in critically ill patients	70

LIST OF FIGURES

Figure	Subject	Page	
No.			
1	Fluid balance during Steady-State Conditions	6	
2	The ECF and the ICF	9	
3	Major Cations and Anions of the ICF and ECF	10	
4	Effects of Isotonic (A), Hypertonic (B), and Hypotonic (C) solutions on cell volume	11	
5	Brain cell volume regulation during hyponatremia	15	
6	routes of enteral feeding	28	
7	Point of care (POC) ultrasonography	38	
8	Length of stay of studied patients at ICU	54	
9	primary cause of admission in our study patients	54	
10	SAPA II points of studied patients at admission and after 4 days		
11	SAPA II (%) of studied patients at admission and after 4 days		
12	SOFA points of studied patients at admission and after 4 days		
13	SOFA (%) of studied patients at admission		
14	SOFA (%) of studied patients after 4 days		
15	APACHE II points of studied patients after 4 days		
16	APACHE II (%) of studied patients after 4 days	60	
17	KIDGO of studied patients after 4 days	60	
18	Mortality rates in study groups		
19	Comparison between survivors and non-survivors in age	65	
20	Comparison between survivors and non-survivors in cumulative fluid balance	65	
21	Comparison between survivors and non-survivors in length of stay at ICU	66	
22	Comparison between survivors and non-survivors in admission SAPS II	66	

23	Comparison between survivors and non-survivors in APACHEII	67
24	Comparison between survivors and non-survivors in admission SOFA	67
25	Receiver Operating Characteristics curve of fluid balance as predictor of mortality in critically ill patients	69

LIST OF ABBREVIATIONS

ABG	Arterial blood gas analysis
ACAA	Aromatic chain amino acids
ACES	Abdominal and cardiac evaluation with sonography in shock
ADH	Antidiuretic hormone
AKI	Acute Kidney Injury
ARDS	Acute respiratory distress syndrome
ARF	Acute renal failure
BCAA	Branched chain amino acids
BMP	Monitor basic metabolic panel
BUN	Blood urea nitrogen
CMP	Comprehensive metabolic panel
CO	Cardiac output
COPD	Chronic obstructive pulmonary disease
CPM	Central pontine myelinolysis
CRF	Chronic renal failure
CT	Computed tomography
CVP	Central venous pressure
CVVH	Continuous veno-venous hemofiltration
D5	5% dextrose
D5 1/2NS	5% dextrose in half amount of normal saline
D5LR	5% dextrose in lactated Ringer solution
D5NS	5% dextrose in normal saline
D5W	D.5% Dextrose in water
DOSE-AHF	Diuretic Optimization Strategy Evaluation in Acute
	Decompensated Heart Failure
ECF	ExtraCellular Fluid
ECG	Electrocardiogram
EN	Enteral nutrition
ETF	Enteral tube feeding
FB	Fluid Balance
FOCUS	Focused cardiac ultrasound
GRV	Gastric residual volume
HBOC	Hemoglobin carrying oxygen
HES/HAES	Hydroxyethyl starch
HOB	Head of bed
ICF	IntraCellular Fluid
ICUs	Intensive care units
IHD	Intermittent hemodialysis
IQ-R	IQ- range
IV	Intravenous
KUB	Kidney ureter bladder X-ray