

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

ANALYTICAL STUDY ON THE EFFECT OF THE DIFFERENT WATER CONDITIONERS ON THE CONSTITUENT OF WATER USED IN AGRICALTURAL FROM DIFFERENT SOURCESS

THESIS SUBMITTED FOR PhD DEGREE (CHEMISTRY)

BY EHAB HOSNY TAHA B.Sc., 1991 M.Sc., 1996

TO
THE UNIVERSITY OF CAIRO
FACULTY OF SCIENCE
GIZA, EGYPT

BILL

2001

APPROVAL SHEET FOR SUBMISSION

Title of Ph.D. Thesis: Analytical Studies On The Effect Of The Different Water Conditioners On The Constituent Of Water Used In Agriculture From Different Sources

Name of the candidate: Ehab Hosny Taha Fouda

This thesis has been approved for submission by the supervisors:

- 1- Prof. Dr. Barsoum Nashid Barsoum Signature:
- 2- Prof. Dr. Mohamed Mamon Mwafe Signature:
- 3- Assist. Prof. Ihsan Mohamed Kenawi Signature:

Prof.Dr. Sadek El-Sayed Abdu

Chairman Of Chemistry Department. Faculty oF Science- Cairo University

ACKNOWLEDGEMENT

I wish to express my sincere thanks to professor Dr. *Barsoum Nashid Barsoum*, Professor of Analytical Chemistry, Chemistry Department, Faculty of Science, Cairo University not only for suggesting and planning the point of research, but also for his valuable supervision and guidance assistance during this study.

I wish also to acknowledge the remarkable encouragements and valuable help of professor *Mohamed Mammon Mwafe* professor of phytotoxicity, Central Agricultural pesticide laboratory (CAPL), Ministry of Agriculture.

My great thanks also goes to professor Dr. *Ihsan Mohamed Kenawi* Professor of Inorganic Chemistry, Chemistry Department, Faculty of Science, Cairo University for continuous help and guidance assistance during the study.

Special gratitude to Dr. *F Hmam*, Mr. *Alaa Sad* and Mr. *S.A.Emam* for their help and facilities they provided during this study.

Abstract

Name: Ehab Hosny Taha Fouda

Title of Thesis: Analytical Studies On The Effect Of The Different Water

Conditioners On The Constituent Of Water Used In Agriculture From Different

Sources

Degree: (Ph.D) of Science Cairo University 2000/2001

This work has been carried out to investigate the effect of magnetic and electrocatalytic water conditioners on the chemical and physical properties of saline irrigation water (EC>2500 ppm). The results showed no clear difference when the two saline well water samples were analyzed before and after both conditioners. The conditioned and unconditioned water were used to irrigate saline-sandy and sodic-clay soil then the tested soils were analyzed after five and ten irrigation with respect to exchangeable ions, micro and microelement, SAR, PAR, ESP and EC. The results indicated some improvement in soil sections which were irrigated with conditioned rather than unconditioned water.

Finally, the conditioned and unconditioned water were used to irrigate radish and kidney bean, which have sensitivity to saline water. The chlorophyll analysis and the determination of dry and wet weigh illustrated that the use of conditioned water lead to the improvement in plants growth.

Key words: magnetic conditioner, catalytic conditioner, saline, sodic, soil, water

Supervisors: I- Prof. Dr. Barsoum Nashid Barsoum

2-Prof. Dr. Mohamed Mamon Mwafe 3-Assist. Prof. Ihsan Mohamed Kenawi

Prof.Dr. Sadek El-Sayed Abdu

Chairman Of Chemistry Department. Faculty OF Science-Cairo University

CONTENTS

	PAGE	
INTRODUCTION		1
CHAPTER 1		2
LITERATURE SURVEY		2
1-1 SOIL RESPONSE TO SALINE AND SODIC CONDITIONS		2
1-2 CHEMICAL AND PHYSICAL ANALYSIS OF SOIL		8
1- SOIL pH		8
2 - SOLUBLE SALT AND ELECTRICAL CONDUCTIVITY		9
3- CARBONATES		11
4- ANION ANALYSIS		12
5- CATION ANALYSIS		14
6- AMMONIUM ACETATE-EXTRACTABLE ELEMENTS		15
7- SODIUM BICARBONATE EXTRACTANT		17
8- EDTA AND DTPA EXTRACTANT		18
1-3 MAGNETIC AND CATALYTIC WATER TREATMENT		22
CHAPTER 2		24
MATERIAL AND METHOD		24
2-1 LOCATION		24
2-2 DESCRIPTION AND CONSTRUCTION OF CONDITIONER	₹S	25
1-CATALYTIC WATER CONDITIONER (CWC)		25
2-MAGNETIC WATER CONDITIONER		27
2-3 MATERIALS		29
2-4 STANDARD SOLUTIONS		29
2-5 CONSTRUCTION OF SOIL COLUMNS		31
2-6 METHODS		32
2-6-1-SOIL MEASUREMENT		32
1-SOIL PH		32

	PAGE
2-ELECTRICAL CONDUCTIVITY (EC)	32
3-PERCENTAGE CALCIUM CARBONATE	32
4-EXCHANGEABLE CATIONS	33
CALCIUM AND MAGNESIUM	33
SODIUM AND POTASSIUM	33
5-EXCHANGEABLE ANIONS	34
CARBONATE AND BICARBONATE	34
CHLORIDE	34
SULFATE	34
6-MICROELEMENTS (Fe & Mn & Cu AND Zn)	35
7-MACROELEMENTS (N&PAND K)	35
8-CALCULATION OF SAR, PAR AND ESP	36
2-7 LEACHING WATER ANALYSIS	36
2-8 ESTIMATION OF PERCOLATION TIME	37
2-9 PHYTOTOXIC EFFECT OF CONDITIONED AND UNCONDITIO	NED
WATER ON KIDNEY_BEAN AND RADISH	37
DETERMINATION OF CHLOROPHYLL	38
CHAPTER-3-	. 3
RESULTS AND DISCUSSION	39
3-1 Classification of tested soils according to texture	40
3-2 Classification of tested soils according to chemical analysis	40
3-3 Classification of used irrigation water	4]
3-4 Chemical analysis of clay soil sections irrigated with catalytically	
conditioned and unconditioned water after 5 and 10 irrigation times	43

3-5 Chemical analysis of water coming from leaching of clay soil irrigated with	
catalytically conditioned and unconditioned water after 10 irrigation time intervals	65
3-6 Chemical analysis of sandy soil sections irrigated with catalytically conditioned	
and unconditioned water after 5 and 10 irrigation times	72
3-7 Chemical analysis of water coming from leaching of sandy soil irrigated with	
	95
catalytically conditioned and unconditioned water after 10 irrigation time intervals	,
3-8 Chemical analysis of clay soil sections irrigated with magnetically conditioned	
and unconditioned water after 5 and 10 irrigation times	103
3-9 Chemical analysis of water coming from leaching of clay soil irrigated with	
magnetically conditioned and unconditioned water after 10 irrigation time intervals	125
	ا.
3-10 Chemical analysis of sandy soil sections irrigated with magnetically conditioned	
and unconditioned water after 5 and 10 irrigation times	132
3-11 Chemical analysis of water coming from leaching of sandy soil irrigated with	
magnetically conditioned and unconditioned water after 10 irrigation time intervals	154
3-12 Electrocatalytic water conditioner	162
3-13 Magnetic water conditioner	166
3-14 Infiltration rate and percolation time	172 178
Phytotoxic effect of conditioned and unconditioned water on kidney bean and radish	170
Effect of irrigation with conditioned water on chlorophyll contents of kidney bean and radish	178
4-Summary	184
5-Reference	187

Table No.	Title	Page.
Table(A)	Chemical analysis of clay and sandy soil	42
Table (B)	Chemical analysis of well water coming from El-Merg zone before and after magnetic conditioner	42
Table (C)	Chemical analysis of well water coming from the eastern desert before and after catalytically conditioner	42
Table (1)	Concentration of Na ⁺ in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	45
Table (2)	Concentration of Ca ²⁺ in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	46
Table (3)	Concentration of K+ in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	47
Table (4)	Concentration of Mg2+ in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	48
Table (5)	Concentration of bicarbonate in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	49
Table (6)	Concentration of sulfate in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	50
Table (7)	Concentration of chloride in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	51
Table (8)	Concentration of nitrogen in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	
Table (9)	Concentration of phosphorus in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	53
Table (10)	Concentration of potassium in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	
Table (11)		

	Concentration of Cu in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	56
	Concentration of Zn in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	57
	Concentration of Mn in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	58
	SAR in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	59
Table (16)	ESP in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	60
Table (17)	PAR in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	61
Table (18)	EC(ppm) in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	62
Table (19)	EC(mmohs/cm) in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	63
Table (20)	% carbonate in clay soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	64
Table (21)	Determination of sodium, potassium, calcium and magnesium in water coming from leaching of clay soil irrigated with catalytically conditioned and unconditioned water after 10 irrigation time intervals	66
Table (22)	Determination of carbonate, bicarbonate, chloride and sulfate in water coming from leaching of clay soil irrigated with catalytically conditioned and unconditioned water after 10 irrigation time intervals	68
Table (23)	Determination of SAR, PAR and EC in water coming from leaching of clay soil irrigated with catalytically conditioned and unconditioned water after 10 irrigation time intervals	70
Table (24)	Concentration of Na ⁺ in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	75
Table (25)	Concentration of Ca ²⁺ in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	76

= 11 (O()		
Table (26)	Concentration of K+ in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	77
Table (27)	Concentration of Mg2+ in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	78
Table (28)	Concentration of bicarbonate in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	79
Table (29)	Concentration of sulfate in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	80
Table (30)	Concentration of chloride in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	81
Table (31)	Concentration of nitrogen in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	82
Table (32)	Concentration of phosphorus in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	83
Table (33)	Concentration of potassium in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	84
Table (34)	Concentration of Fe in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	85
Table (35)	Concentration of Cu in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	86
Table (36)	Concentration of Zn in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	87
Table (37)	Concentration of Mn in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	88
Table (38)	SAR in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	89
Table (39)	ESP in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	90
Table (40)	PAR in sandy soil sections irrigated with catalytically conditioned and unconditioned water after 5 and 10 irrigation times	91