

Minimally Invasive versus Conventional Mitral Valve Surgery Comparison of Early Outcomes□

Thesis

Submitted for Partial Fulfillment of MD Degree in Cardiothoracic Surgery

Presented by

Mostafa Abd Ellah Mohamed El Dewer

MSc Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Tarek Mouneer El Sayegh

Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Prof. Dr. Hatem Yazeed El Bawab

Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Dr. Yasser Mahmoud El Nahas

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Dr. Ahmed Helmy Aly Omar

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

Words cannot express my deepest gratitude to **PROF. DR. TAREK MOUNEER EL SAYEGH,** Professor of Cardiothoracic Surgery, Ain Shams University, who helped me throughout this work by training, precious instructions, valuable advices and scientific knowledge to accomplish such work.

It has been a great honor for me to work under his generous supervision Great words really needed to express my gratitude, sincere appreciation and respect to **PROF. DR. HATEM YAZEED EL BAWAB**, Professor of Cardiothoracic Surgery, Ain Shams University, for his great help, continuous support, and sincere advice during this work.

I would also like to thank **DR. YASSER MAHMOUD EL NAHAS**, Assistant Professor of Cardiothoracic Surgery, Ain Shams
University for his continuous encouragement, guidance and support.

I would also like to thank **DR. AHMED HELMY ALY OMAR**, Assistant Professor of Cardiothoracic Surgery, Ain Shams University for his continuous guidance and support he gave me throughout the whole work.

Finally, my deepest thanks to all my family and my colleagues who helped me in the production of this work.

Contents

5	Subjects Page		
Li Li	st of abbreviations st of figures st of tables bstract	V	
•	Introduction	1	
•	Aim of the Work	4	
•	Review of Literature		
	Historical Background	5	
	♦ Surgical Incisions Related to Mitral Valve Su	urgery12	
	Surgical Anatomy of the Mitral Valve	46	
	♦ Pathology and Indications of Surgery	53	
	♦ Minimally Invasive Mitral Surgery	80	
	♦ Surgical Approach of Mitral Valve	109	
•	Patients and Methods	165	
•	Results	181	
•	Discussion	207	
•	Summary	221	
•	Conclusion	224	
•	Recommendations	226	
•	References	227	
•	Arabic Summary		

List of Abbreviations

ABG : Arterial blood gas

ACT : Activated clotting time

AF : Atrial fibrillation

CAD : Coronary artery disease

CPB : Cardiopulmonary bypass

CT : Computed axial tomography

DSWI : Deep sternal wound infection

ECG : Electrocardiogram

FS : Full sternotomy

ICU : Intensive care unit

IE : Infective endocarditis

LA : Left atrial

LAD : Left anterior descending artery

LV : Left ventricular

LVEF : Left Ventricular Ejection Fraction

MICS : Minimally invasive cardiac surgery

MIDCAB: Minimally invasive direct coronary bypass

operation

MIMVS : Minimally invasive mitral valve surgery

List of Abbreviations

MR : Mitral regurgitation

MRSA : Methicillin-resistant S. *aureus*

MS : Mitral stenosis

MVA : Mitral valve area

PASP : Pulmonary artery systolic pressure

STS : Society of Thoracic Surgeons

TE : Thromboembolic

TEE : Transesophageal echocardiography

TR : Tricuspid regurgitation

VATS : Video-assisted thoracic surgery

VRE : Vancomycin-resistant *enterococcus*

.

No.	<u>Figure</u>	Page
<u>1</u>	Median sternotomy incision	17
<u>2</u>	Approximating segments of fractured sternum	22
<u>3</u>	Mechanism of brachial plexus injury	24
<u>4</u>	Loose sternal wiring	26
<u>5</u>	Conventional Robiczek sternal weave	30
<u>6</u>	Irrigation suction system	31
<u>7</u>	Options for entering the pleural space	34
<u>8</u>	Subcutaneous air is seen within an intercostal hernia in a patient taking steroids who had undergone an anterior thoracotomy for lung biopsy	44
9	Anatomy of the mitral valve as it relates to other cardiac structures	51
<u>10</u>	Indications for Intervention for Rheumatic MS	65
<u>11</u>	Indications for Surgery for MR	78
<u>12</u>	Chest incisions (shaded rectangles represent extent of skin incision)	89
<u>13</u>	Skin incisions overlying upper or lower sternum	92
<u>14</u>	In partial sternotomy, only the corpus is divided longitudinally	95
<u>15</u>	Surgeon's view of the operation set-up	97
<u>16</u>	Patient positioned supine with inflatable pillow under right scapula providing access to the right anterior and lateral chest and right groin	98

No.	<u>Figure</u>	<u>Page</u>
<u>17</u>	Port access system	100
<u>18</u>	Port-Access system with transfemoral artery endoaortic balloon occlude	103
<u>19</u>	During minimally invasive video-assisted mitral surgery, the camera is voice activated and positioned by the surgeon using the Aesop 3000 robot. Operative manoeuvres are made through the 5-cm incision using long instruments and secondary vision	104
<u>20</u>	The da Vinci Robotic Telemanipulation System.	105
<u>21</u>	Ports for robotic mitral valve surgery.	107
<u>22</u>	This thoracic cross-section during a da Vinci mitral operation	108
<u>23</u>	Median sternotomy incision	115
<u>24</u>	Positioning of the surgical team in the operating room	129
<u>25</u>	Vacuum suction of CPB reservoir	130
<u>26</u>	Defibrillator pads	130
<u>27</u>	Patient positioning for a right-sided single-access mitral valve procedure	133
<u>28</u>	Minimal invasive instruments (needle holders, scissors)	136
<u>29</u>	Collection of minimal invasive instruments	137
<u>30</u>	Collection of minimal invasive instruments with closed view	137
<u>31</u>	Minimally invasive left atrial roofretractor	138

No.	<u>Figure</u>	<u>Page</u>
<u>32</u>	Different blades size of left atrial retractor and it's hand	139
<u>33</u>	Minimally invasive surgery retractor	139
<u>34</u>	Minimally invasive surgery retractor with different blades	140
<u>35</u>	Minimally invasive aortic crossclamp (Chitwood clamp)	140
<u>36</u>	Minimally invasive aortic crossclamp (cosgrove clamp) in fixed extended flexible position	141
<u>37</u>	Transaortic balloon endoclamp (65cm)	141
<u>38</u>	Four different incisions applicable to port access mitral procedures	143
<u>39</u>	Soft tissue retractor (Edwards)	144
<u>40</u>	Soft tissue retractor (Estech)	145
<u>41</u>	Soft tissue retractor (Alexis)	146
<u>42</u>	Whuston needle for pericardial retraction suture	147
<u>43</u>	Peripheral cannulation of femoral vessels	149
<u>44</u>	Arterial and venous femoral cannulae	149
<u>45</u>	Cardioplegia cannula and it's y connection	150
<u>46</u>	Photos captured during minimal invasive mitral surgery showing aortic occlusion by Chitwood clamp	154
<u>47</u>	Percutaneous retrograde cardioplegia catheter	156
<u>48</u>	Photo captured during MIMVS showing interrupted horizontal pledgetted mattres sutures on the mitral annulus as shown on the monitor of the thoracoscope	158

No.	<u>Figure</u>	Page
<u>49</u>	Mitral valve exposure as seen on video assistance monitor. The annuloplasty ring is sutured, and the valve is checked for the quality of the repair in a standard manner	158
<u>50</u>	Cor knot device instead of suture ligation	159
<u>51</u>	Surgical field	159
<u>52</u>	Closure of left atriotomyincision	161
<u>53</u>	Two Blake ® pericardial silicone drains (Ethicon, Somerville, NJ, USA) are placed into the right pleural cavity (through a lower working port) and into the pericardium (upper working port)	162
<u>54</u>	Pericardial silicone drains and it's connection	163
<u>55</u>	Photo captured post MIMVS showing skin incision length	163
<u>56</u>	Photo captured showing positioning and site of planned incision of a patient undergoing minimal invasive mitral valve surgery	170
<u>57</u>	Right mini-thoracotomy: Cannulation. The femoral venous cannula is advanced into the superior vena cava using guidewire technique and echo guidance	172
<u>58</u>	Visual Analog Scale for Pain evaluation	179
<u>59</u>	EF among the studied groups	185
<u>60</u>	LA diameter among the studied groups	186
61	LVED diameter among the studied groups	188

No.	<u>Figure</u>	Page
<u>62</u>	LVES diameter among the studied groups	189
<u>63</u>	PAP among the studied groups	191
<u>64</u>	Cannulation time among the studied groups	194
<u>65</u>	Clamping time among the studied groups	194
<u>66</u>	Total Bypass time among the studied groups	195
<u>67</u>	Incision Length among the studied groups	195
<u>68</u>	Blood loss among the studied groups	198
<u>69</u>	Blood transfusion among the studied groups	198
<u>70</u>	Ventilation duration among the studied groups	199
<u>71</u>	ICU stay among the studied groups	199
<u>72</u>	Postoperative complications among the studied groups	201
<u>73</u>	Pain among the studied groups	203
<u>74</u>	Satisfaction among the studied groups	204
<u>75</u>	Total stay among the studied groups	205

List of Tables

No.	<u>Table</u>	<u>Page</u>
1	Applying Classification of Recommendations and Level of Evidence.	58
<u>2</u>	Stages of MS.	59
<u>3</u>	Summary of Recommendations for MS Intervention.	66
<u>4</u>	Stages of Primary MR.	68
<u>5</u>	Summary of Recommendations for Chronic Primary MR.	74
<u>6</u>	Carpentier-Loulmet Classification of Degrees of Surgical Invasiveness.	83
7	Demographic characteristics and preoperative clinical assessment among the studied groups.	183
<u>8</u>	EF (%) among the studied groups.	184
9	LA diameter (cm) among the studied groups.	186
<u>10</u>	LVED diameter (cm) among the studied groups.	187
<u>11</u>	LVES diameter (cm) among the studied groups.	189
<u>12</u>	PAP (mmHg) among the studied groups.	190
<u>13</u>	Intraoperative findings among the studied groups.	193

List of Tables

<u>No.</u>	<u>Table</u>	<u>Page</u>
<u>14</u>	Postoperative findings among the studied groups.	197
<u>15</u>	Postoperative complications among the studied groups.	201
<u>16</u>	Postoperative pain & patient satisfaction among the studied groups.	202
<u>17</u>	Satisfaction among the studied groups.	204

ABSTRACT

Background: Although the first mitral valve replacement method through right thoracotomy incision under cardiopulmonary bypass was described by Lillehei and colleagues in 1957, median sternotomy approach is still considered the standard approach for mitral valve surgery. In the late 1990s, a novel technique named "minimally invasive mitral valve surgery" was proposed. In 1996, Carpentier and colleagues accomplished the first video assisted mitral valve repair through a right thoracotomy. We hypothesized that mitral valve surgery, if performed through a right anterolateral minithoracotomy, would not only be better accepted cosmetically by patients, but also make redo surgery through a median sternotomy easy and trouble free from re-entry bleeding and less postoperative ICU, hospital stay and complication with better pulmonary function.

Objectives: To compare between the early outcomes for patients undergoing mitral valve surgery through right anterolateral minithoracotomy technique and those undergoing mitral valve surgery through conventional full sternotomy technique

Methodology: Our study was conducted in Cardiovascular Hospital – Cardiac Surgery Department- Ain Shams University during (2016-2018) It was a prospective non-randomized comparative study of sixty patients with mitral valve disease were devided into two equal groups; Group "I" 30 patients underwent mitral valve surgery through a minimally invasive right anterolateral minithoracotomy and Group "II" 30 patients underwent mitral valve surgery through standard full median sternotomy. The ethical committee approved the study.

Results: There was no statistical difference between the two groups preoperatively regarding their age, sex, NYHA class, EF%, LA dimension,. There was no operative mortality in both groups but fewer postoperative complications such as wound infection; postoperative arrhythmias occurred in both groups. Postoperative bleeding, inotropic requirement, ventilatory support and blood transfusion were less in group "I" with highly significant statistical difference(P-value < 0.01), with better cosmetic appearance.

Conclusion: Right anterolateral minithoracotomy minimally invasive technique provides convenient exposure of the mitral valve, a better cosmetic lateral scar. In addition, minimally invasive right anterolateral minithoracotomy for mitral valve surgery was

comparable to median sternotomy technique regarding safety, with fewer complications and postoperative pain, faster postoperative return to work with no movement restriction after surgery. It should be used as an alternative approach for mitral valve surgery.

Keywords:

- Minimally invasive right anterolateral minithoracotomy
- Mitral valve surgery.
- Median sternotomy