

ADAPTIVE MULTI-FUNCTION TRANSFORMER DIFFERENTIAL PROTECTIVE RELAY

By

Ahmed El-Sayed Hassan Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree Of
MASTER of Science

in

Electrical Power and Machines Engineering

ADAPTIVE MULTI-FUNCTION TRANSFORMER DIFFERENTIAL PROTECTIVE RELAY

By

Ahmed El-Sayed Hassan Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree Of
MASTER of Science

in

Electrical Power and Machines Engineering

Under the supervision of

Prof. Dr. Hany M. Amin Elghazaly Prof. Dr. Mahmoud Ibrahim Gilany

Electrical Power and Machines Department Faculty of Engineering, Cairo University

Electrical Power and Machines Department Faculty of Engineering, Cairo University

ADAPTIVE MULTI-FUNCTION TRANSFORMER DIFFERENTIAL PROTECTIVE RELAY

By

Ahmed El-Sayed Hassan Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree Of
MASTER of Science

in

Electrical Power and Machines Engineering

Examining committee	
Prof. Dr. Hany M. Amin Elghazaly	Thesis Main Advisor
Prof. Dr. Mahmoud Ibrahim Gilany	Thesis Advisor
Prof. Dr. Rabah Yousef Amer	Internal Examiner
Prof. Dr. Ashraf Ibrahim Megahed Faculty of Engineering, Alexandria University	External Examiner

Approved by the

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer: Ahmed El-Sayed Hassan Saleh

Date of Birth: 14 / 09 / 1987 **Nationality:** Egyptian

E-mail: ahmed.saleh87@eng1.cu.edu.eg

Phone.: +20 / 1093883099 +20 / 1208645423 **Address:** Egypt – Moharm Bek, Alexandria

Registration Date: 01 / 10 / 2015 **Awarding Date:** / 2019 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Hany M. Amin El-Ghazaly

Prof. Dr. Mahmoud Ibrahim Gilany

Examiners: Prof. Dr. Ashraf Ibrahim Megahed (External Examiner)

(Faculty of Engineering, Alexandria University)

Prof. Dr. Rabah Yousef Amer (Internal Examiner)Prof. Dr. Hany Mohamed Elghazaly (Thesis Main Advisor)

Prof. Dr. Mahmoud Ibrahim Gilany (Advisor)

Title of Thesis:

Adaptive Multi-Function Transformer Differential Protective Relay

Key Words:

Adaptive & Differential & Protective & Relay & Transformer.

Summary:

This thesis presents a new relay model for the transformer differential protection. The thesis focuses on some operating condition which cause differential relay malfunction. It proposed a self-adaptive differential characteristic that help to avoid such relay mal-function. It also introduced a transformer Internal fault model to investigate the performance of the proposed relay model during internal faults using PSCAD/EMTDC software program.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been

submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed El-Sayed Hassan Saleh	Date:
Signature:	

Dedication

This work is gratefully dedicated to:

My parents, my wife, my little son Omar and my little daughter Aisha

Acknowledgments

"All the praises and thanks be to **Allah**, who has guided us to this work, and never could we have found guidance, were it not that Allah had guided us"

Then, I would like to express my sincere gratitude and appreciation to my supervisors; Prof. Dr. Hany Elghazaly and Prof. Dr. Mahmoud Gilany (Cairo University) for their guidance, valuable advice, suggestions, and precious comments that improved the whole thesis besides their encouragement and patience and throughout the period of the research.

Finally, I can't forget to express my deep thanks to my parents, and my wife, for their kind support, strong encouragement and patience.

Table of Contents

Disclaimer	i
Dedication	ii
Acknowledgments	s iii
List of Tables	xi
List of Figures	xiii
	XX
Abstract	XXV
Chapter 1: Intro	oduction and Principles of the Transformer and
_	erential Protection1
1.1. Pro	oblem Statement1
1.1.2.	Reasons
1.2. Tra	ansformer Faults2
1.2.1.	Transformer Fault Currents
1.2.2.	Ground Faults in a Delta-Connected Winding4
1.2.3.	Turn to Turn Faults4
1.3. Ab	onormal Operation Conditions5
1.3.1.	Transformer Inrush Current
1.3.2.	Sympathetic Inrush Current7
1.3.3.	External Faults with Current Transformer (CT) Saturation8

1.3.4.	Overexcitation	9
1.4. Ge	eneral Background about Transformers	9
1.4.1.	Equivalent Circuit of a Transformer	9
1.5. Tra	ansformer Differential Protection Principles	11
1.5.1.	Percentage Differential Characteristics	11
1.6. Th	esis Organization	14
Chapter 2: Lite	rature Review	16
2.1. Lit	terature Review	16
2.1.1.	History of Transformer Differential Protection	16
2.1.2.	Transformer Internal Faults' Modeling and Simulation	17
2.1.3.	Transformer Internal Faults' Detection	18
2.1.4.	Modeling and Simulation of Numerical Transformer Differential Relay	19
2.1.5.	CT Saturation and Sympathetic Inrush	20
2.1.6.	Discrimination between Inrush and Fault Currents and Stab during Overexcitation Conditions	•
2.2. Ev	aluation of the Literature Review and Thesis Object	ives
		21
Chapter 3: Trai	nsformer Modeling	24
3.1. Mo	odeling of Transformer Inter-Turn Faults	24
3.1.1.	Turn to Ground Faults	25
3.1.2.	Turn to Turn Faults	26
3.2. Im	plementation in PSCAD/EMTDC Software	26
3.3 Si	nulation Results	29

	3.3	.1.	Turn to Ground Faults	29
	3.3	5.2.	Turn to Turn Faults	32
	3.4.	Mo	odel Validation	34
Chapte	r 4: ′	The	Proposed Relay Model Basic Units and Inter-Tu	rn
]	Faul	t Detection Module	37
	4.1.	Nu	merical Measured Value Processing Unit	37
	4.1	.1.	Measured Value Adaptation	37
	4.1	.2.	Current Referring.	39
	4.1	.3.	Zero Sequence Current Elimination	39
	4.1	.4.	Vector Group Compensation	39
	4.1	.5.	Phasor Estimation	40
	4.2.	Th	e Proposed Differential Unit	41
	4.3.	Th	e Proposed Self-Adaptive Percentage Differential	
		Ch	aracteristics	42
	4.4.	Th	e Proposed Relay Model Architecture and Interlock	s .43
	4.5.	Th	e Proposed Inter-Turn Fault Detection Module	45
	4.5	5.1.	Setting Calculations	45
	4.5	5.2.	Computation of the Operating Point	47
	4.5	5.3.	Inter-Turn Fault Analysis	48
	4.5	5.4.	Transformer Impedance and Inter-Turn Faults	48
	4.5	5.5.	The Proposed Inter-Turn Detection Module Algorithm	50
	4.6.	Sir	nulation Results	51
	4.6	5.1.	Turn to Ground (T-G) Faults	51
	4.6	5.2.	Turn to Turn (T-T) Faults	54