

SUITABILITY OF APPLYING TREATED WASTEWATER IN REINFORCED CONCRETE MIXING AND CURING

A Thesis

Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

Prepared by ENG. HUSSEIN MAHMOUD AHMED EL-GHORAB

B.Sc. in Civil Engineering, May 2013
Faculty of Engineering – Ain Shams University – Cairo, EGYPT

Supervisors

Prof. Dr. MOHAMED EL HOSSEINY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. MOHAMED SOBHY ABD EL-RAHMAN,

Associate professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. MOHAMED KOHAIL MOHAMED FAYEZ,

Assistant professor of Properties & Testing of Materials Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

SUITABILITY OF APPLYING TREATED WASTEWATER IN REINFORCED CONCRETE MIXING AND CURING

A Thesis For
The M.Sc. Degree in Civil Engineering
(SANITARY & ENVIRONMENTAL ENGINEERING)

by

ENG. HUSSEIN MAHMOUD AHMED EL-GHORAB

B.Sc. in Civil Engineering, May 2013 Faculty of Engineering – Ain Shams University – Cairo, EGYPT

THESIS APPROVAL

Prof. Dr. Mohamed El Sayed Aly Basuiony Professor of Sanitary Engineering Faculty of Engineering, Banha University Prof. Dr. Tarek Ismail Sabry Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University Prof. Dr. Mohamed El Hosseiny El Nadi Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University

Date: - 23/2/2019

Dedication

This thesis is dedicated to every person who guided me through my journey in life and helped me be what I am today.

A special dedication to

My supportive Parents

And to

My dear Wife

And finally
Special dedication to my dearest person

My Grandmother

Thank you for encouraging me to complete this work and for always being there for me.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from October 2015 to September 2018.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Date: - 23/2/2019

Signature: - -----

Name: - HUSSEIN MAHMOUD AHMED EL-GHORAB

ACKNOWLEDGMENTS

First, thanks are all direct to Allah, for blessing this work until it has reached its end, as a part of generous help throughout my life.

With most appreciation and gratitude, I owe much thanks to my mentor **Professor Dr. Mohamed El Hossieny El Nadi**, Professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, as this thesis was only possible due to his immense efforts, and continuous support.

I am deeply thankful to **Dr. Mohamed Sobhy Abd El-Rahman**, Associate Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for his continuous encouragement and deep interest in the development and success of this work.

I would like to thank **Dr. Mohamed Kohail Mohamed Fayez**, Assistant Professor of Properties and Testing of
Materials Engineering, Faculty of Engineering, Ain Shams
University, for his genuine help and guidance. I am grateful for
all the time, effort and knowledge he gave me.

Finally, sincere thanks to the staff and personnel of Gabal El Asfar Water Treatment Plant, and Properties and Testing of Materials Labs, Faculty of Engineering, Ain Shams University, for facilities, encouragement and cooperation during the experimental work of this study.

ABSTRACT

Name: HUSSEIN MAHMOUD AHMED EL-GHORAB Title: "SUITABILITY OF APPLYING TREATED WASTEWATER IN REINFORCED CONCRETE MIXING AND CURING"

Faculty: Faculty of Engineering, Ain Shams University.

Specialty: Civil Eng., Public Works, Sanitary & Environmental Eng.

Abstract: -

The objective of this thesis is to study the effect of using treated wastewater in mixing and curing of concrete to identify the suitability of its usage. The problem is that potable water is considered to be scarce in many of the world's countries and finding applications for treated wastewater reuse is very effective in preserving potable water resources.

The thesis compares the concrete properties for specimens mixed and cured by three different types of treated wastewater which are primary, secondary and tertiary treated wastewater to that for specimens mixed and cured by potable water.

The concrete properties included in the study were: (Setting time, compressive strength, tensile strength, bond strength, abrasion, density, absorption, voids, sorptivity, sulfate attack, and corrosion probability), and these properties were assessed since the time of mixing till concrete age of 180 days.

The results show that it is possible to use treated wastewater in mixing and curing of reinforced concrete with some concerns that differ for each treated wastewater type, where some concrete properties included in the study are relatively lower than that of using potable water with the increase of organic materials in the treated wastewater.

SUPERVISORS

Prof.Dr. Mohamed El Hosseiny El Nadi, Associate Prof. Dr. Mohamed Sobhy Abd El-Rahman, Assistant Prof. Dr. Mohamed Kohail Mohamed Fayez.

KEY WORDS

Treated Wastewater, Concrete Mixing, Concrete Curing.

TABLE OF CONTENTS

COVER		Page
APPRO	VAL COMMITTEE	ii
DEDICATION		iii
STATE	MENT	iv
ACKNO	WLEDGMENTS	V
ABSTRA		vi
TABLE	OF CONTENTS	vii
	FFIGURES	X
LIST O	FTABLES	xiii
	ER I: INTRODUCTION	
1.1	BACKGROUND	1
1.2	STUDY OBJECTIVES	1
1.3	SCOPE OF WORK	2
1.3.1	THEORETICAL PART	2
1.3.2	EXPERIMINTAL PART	2
1.4	THESIS ORGANIZATION	3
CHAPT	ER II: LITERATURE REVIEW	
2.1	GENERAL IDEA FOR WASTEWATER REUSE	4
2.2	WASTEWATER TREATMENT	6
2.2.1	PRELIMINARY TREATMENT	8
2.2.2	PRIMARY TREATMENT	9
2.2.3	SECONDARY TREATMENT	10
2.2.4	TERTIARY TREATMENT	12
2.2.5	DISINFECTION	13
2.2.6	TREATED WATEWATER REUSE APPLICATIONS	14
2.3	CONCRETE MIX	16
2.3.1	CEMENTITUOUS MATERIAL	16
2.3.2	AGGREGATES	18
2.3.3	MIXING WATER	18
2.3.3.1	WATER CONTENT	18
2.3.3.2	WATER QUALITY	19
2.4	CONCRETE PROPERTIES	20
2.4.1	FRESH CONCRETE PROPERTIES	20
2.4.1.1	SPECIFIC WEIGHT OF CONCRETE	20
2.4.1.2	WORKABILITY	21
2.4.1.3	TEMPERATURE	21
2.4.1.4	SETTING TIME	21
2.4.2	HARDENED CONCRETE PROPERTIES	22

2.4.2.1	COMPRESSIVE STRENGTH	23
2.4.2.2	TENSILE STRENGTH	24
2.4.2.3	BOND STRENGTH	26
2.4.3	DURABILITY OF CONCRETE	27
2.4.3.1	ABSORPTION	28
2.4.3.2	SORPTION	28
2.4.3.3	PERMEABILITY	28
2.4.3.4	CARBONATION	29
2.4.3.5	ACID ATTACK	30
2.4.3.6	SULFATE RESISTANCE	30
2.4.3.7	ABRASION	31
2.4.3.8	STEEL CORROSION	31
2.5	CURING OF CONCRETE	32
2.5.1	COMMON METHODS FOR CURING	32
2.5.2	QUALITY REQUIREMENTS FOR CURING	
	WATER	33
2.6	FACTORS GOVERNING APPLICATION OF	
	TREATED WASTEWATER IN CONCRETE	33
2.6.1	BIOLOGICAL FACTORS	34
2.6.2	CHEMICAL FACTORS	34
2.6.3	PHYSICAL FACTORS	34
CII A DT	ED III. MATEDIAI CAND METHODO	
СПАРТ 3.1	ER III: MATERIALS AND METHODS GENERAL IDEA	35
3.1 3.2	APPLIED MATERIAL	35
3.2.1	MIXING AN CURING WATER	35
3.2.1 3.2.2	CEMENT	35
3.2.2 3.2.3	FINE AGGREGATE	36
3.2 . 3	COARSE AGGREGATE	37
3.2. 4 3.3	WATER COLLECTION AND SAMPLING	37
3.3.1	PRIMARY TREATED WASTEWATER (PTWW)	38
3.3.2	SECONDARY TREATED WASTEWATER (STWW)	38
3.3 . 3	TERTIARY TREATED WASTEWATER (TTWW)	38
3.4	EXPERIMENTAL WORK PLAN	39
3.4.1	LAB EXPERIMENTS FOR WATER QUALITY	39
3.4.2	LAB EXPERIMENTS FOR CONCRETE	
	PROPERTIES	40
3.4.2.1	CONCRETE MIX DESIGN	40
3.4.2.2	CONCRETE MIXING, MOLDING, AND CURING	41
3.4.2.3	CONCRETE SPECIMENS SHAPE	41
3.4.2.4	CONCRETE SPECIMENS CURING	42
3.4.2.5		43

CHAPT	ER IV: RESULTS	
4.1	WATER ANALYSIS	49
4.2	CONCRETE PROPERTIES	50
4.2.1	INITIAL SETTING TIME AND SLUMP	50
4.2.2	COMPRESSIVE STRENGTH	50
4.2.3	TENSILE STRENGTH	53
4.2.4	BOND STRENGTH	54
4.2.5	DENSITY, ABSORPTIVITY AND VOIDS	56
4.2.6	SORPTIVITY	59
4.2.7	SULFATE RESISTANCE	67
4.2.8	ABRASION	69
4.2.9	CORROSION POTENTIAL OF STEEL	
	REINFORCEMENT	70
CII A DII	NED W DIGGLIGGION	
	TER V: DISCUSSION	71
5.1		71
5.2		73
5.2.1		74
5.2.2		74
5.2.3		77
5.2.4 5.2.5	BOND STRENGTH DENSITY ARSORDTIVITY AND VOIDS	78 79
5.2.6	DENSITY, ABSORPTIVITY AND VOIDS SORPTIVITY	81
5.2. 0 5.2. 7	SULPHATE RESISTANCE	81
5.2.7.1		81
5.2.7.1		83
5.2.7.2		84
5.2.9	CORROSION POTENTIAL OF STEEL	04
3.4.9	REINFORCEMENT	85
5.3	RELATIONSHIP BETWEEN WATER QUALITY AND	65
3.3	CONCRETE PROPERTIES	86
	CONCRETETROLERIES	80
CHAPT	ER VI: CONCLUSION	
6.1	OVERVIEW	92
6.2	CONCLUSION	93
6.2.1	PRIMARY TREATED WASTEWATER	93
6.2.2	SECONDARY TREATED WASTEWATER	94
6.2.3	TERTIARY TREATED WASTEWATER	95
6.3	RECOMMENDATIONS	96
6.4	FURTHER WORK	98
REFER	ENCESES	99

LIST OF FIGURES

Figure		Page
CHAPTER II:	LITERATURE REVIEW	
Figure (2/1):	Tree of Water Resources Recycling	4
Figure (2/2):	Generalized Municipal Wastewater Treatment Scheme	
	and Points of Reuse	5
Figure (2/3):	Wastewater Treatment Plant Flow Diagram	7
Figure (2/4):	Sketch for Types of Screens Used in Wastewater	
	Treatment	9
Figure (2/5):	Diagram for Circular Primary Clarifier Tank	9
Figure (2/6):	Diagram for Activated Sludge Process for Both Complete	
	Mix Aeration and Plug Flow Aeration	10
Figure (2/7):	Diagram for Trickling Filter with Rock Packing and	
_	Trickling Filter with Plastic Packing	11
Figure (2/8):	Classification of Filtration Processes for Wastewater	
	Treatment	12
Figure (2/9):	Range in Proportions of Materials Used in Concrete by	
	Absolute Volume	16
Figure (2/10):	Graph Plotted Between Setting Time and Penetration	
	Resistance	22
Figure (2/11):	Different Shapes of Specimens for Direct Tension Test	25
Figure (2/12):	Diagram Showing Splitting Tension Test and Value for	
	Horizontal Tensile Stress	26
CHAPTER III:	MATERIALS AND METHODS	
Figure (3/1):	Tertiary Treatment of Secondary Treated Wastewater	
	Using Sand Filter	38
Figure (3/2):	Concrete Specimens	42
Figure (3/3):	Penetration Resistance Test to Asses Setting Time	43
Figure (3/4):	Splitting Tensile Strength Test and Failure Of Specimen	44
Figure (3/5):	Pull Out Test to Assess Concrete Bond Strength	45
Figure (3/6):	Rate of Absorption Test Apparatus	46
Figure (3/7):	Abrasion Resistance Test	47
Figure (3/8):	Half-Cell Potential Test to Assess Corrosion Potential	48

CHAPTER VI:	RESULTS	
Figure (4/1):	Comparison Between Compressive Strength Against	
_	Time for Different Mixing Water Types	52
Figure (4/2):	Comparison Between Tensile Strength Against Time for	
	Different Mixing Water Type	54
Figure (4/3):	Comparison Between Bond Strength Against Time for	
	Different Mixing Water Type	56
Figure (4/4):	PTWW Specimen Initial Absorption	62
Figure (4/5):	STWW Specimen Initial Absorption	62
Figure (4/6):	TTWW Specimen Initial Absorption	63
Figure (4/7):	PW Specimen Initial Absorption	63
Figure (4/8):	PTWW Specimen Secondary Absorption	64
Figure (4/9):	STWW Specimen Secondary Absorption	64
Figure (4/10):	TTWW Specimen Secondary Absorption	65
Figure (4/11):	PW Specimen Secondary Absorption	65
Figure (4/12):	All Specimens Initial Absorption (Si)	66
Figure (4/13):	All Specimens Secondary Absorption (Ss)	66
Figure (4/14):	Comparison Between Percentage Accumulative Weight	
	Loss for Specimens Submerged in Sulfuric Acid Solution	
	for All Water Types	68
CHAPTER V:	DISCUSSION	
Figure (5/1):	Comparison and Minimum Value for pH	72
Figure (5/2):	Comparison and Maximum Value for TDS	72
Figure (5/3):	Comparison and Maximum Value for Chlorides	73
Figure (5/4):	Comparison and Maximum Value for Alkalinity	73
Figure (5/5):	Comparison, Maximum and Minimum Allowable Value	
	for Initial Setting Time	74
Figure (5/6):	Comparison Between Compressive Strength at Early Age	75
Figure (5/7):	Comparison Between Compressive Strength at Late Age	75
Figure (5/8):	Early Age Compressive Strength of Treated Wastewater	
	Specimens as Percentage to Potable Water Specimens	76
Figure (5/9):	Late Age Compressive Strength of TWW Specimens as	
	Percentage to Potable Water Specimens	76
Figure (5/10):	Comparison Between Tensile Strength at Different Ages	77
Figure (5/11):	Tensile Strength of TWW Specimens as Percentage to	
	Potable Water Specimens	77
Figure (5/12):	Comparison Between Bond Strength at Different Ages	78
Figure (5/13):	Bond Strength of TWW Specimens as Percentage to	
	Potable Water Specimens	78
Figure $(5/14)$.	Comparison Between Absorptivity at Different Ages	70

Figure (5/15):	Absorptivity of TWW Specimens as Percentage to Potable	
	Water Specimens	79
Figure (5/16):	Comparison Between Voids at Different Ages	80
Figure (5/17):	Voids of Treated Wastewater Specimens as Percentage to	
	Potable Water Specimens	80
Figure (5/18):	Initial and Secondary Absorption for TWW Specimens as	
_	Percentage to Potable Water Specimens	81
Figure (5/19):	Percentage Strength Loss for All Specimens Subjected to	
_	Sulfates and that Subjected to Normal Conditions	82
Figure (5/20):	Strength Loss for TWW Specimens as Percentage to	
	Potable Water Specimens	82
Figure (5/21):	Percentage Weight Loss for All Specimens After	
	Submersion in Sulfuric Acid Solution for 8 Weeks	83
Figure (5/22):	Weight Loss for TWW Specimens as Percentage to	
	Potable Water Specimens	83
Figure (5/23):	Length Loss due to Abrasion for TWW Specimens as	
	Percentage to Potable Water Specimens	84
Figure (5/24):	Relationship Between COD Content in Treated	
	Wastewater and Concrete's Compressive Strength	87
Figure (5/25):	Relationship Between COD Content in Treated	
	Wastewater and Concrete's Tensile Strength	87
Figure (5/26):	Relationship Between COD Content in Treated	
	Wastewater and Concrete's Bond Strength	88
Figure (5/27):	Relationship Between COD Content in Treated	
	Wastewater and Concrete's Absorption	88
Figure (5/28):	Relationship Between COD Content in Treated	
	Wastewater and Concrete's Void	89
Figure (5/29):	Relationship Between COD Content in Treated	
	Wastewater and Concrete's Initial Absorption	89
Figure (5/30):	Relationship Between COD Content in Treated	
	Wastewater and Concrete's Secondary Absorption	90
Figure (5/31):	Relationship Between COD Content in Treated	
	Wastewater and Concrete's Strength Loss by Sulfate	
	Attack	90
Figure (5/32):	Relationship Between COD Content in Treated	
	Wastewater to Concrete's Weight Loss by Sulfate Attack	91
Figure (5/33):	Relationship Between COD Content in Treated	
<i>5</i> ()	Wastewater to Concrete's Length Loss by Abrasion	91

LIST OF TABLES

Table		Page
CHAPTER II	: LITERATURE REVIEW	
Table (2/1):	Major Constituents of Typical Domestic Wastewater	6
Table (2/2):	Possible Levels of Pathogens in Wastewater	7
Table (2/3):	Wastewater Treatment Process	8
Table (2/4):	Characteristics Comparison of Commonly Used Disinfectants	13
Table (2/5):	Categories of Wastewater Reuse	13
Table (2/5). Table (2/6):	Maximum Concentrations for Some Harmful Chemicals in	14
1 aoic (2/0).	Reinforced Concrete Mixing Water According to ECP-203-	
	2007	19
Table (2/7):	Maximum Concentrations for Some Harmful Chemicals in	
	Reinforced Concrete Mixing Water in other Specifications	19
Table (2/8):	Approximate Specific Weight for Different Concrete Types	21
Table (2/9):	Correction Factor for Different Test Specimens Size and	
	Shape for Fcu Less than $40n/mm^2$	24
Table (2/10):	Factors Used to Obtain a Near Estimate of the	
	Characteristic Concrete Strength from That of Various	
	Concrete Ages	24
Table (2/11):	Factors Used to Obtain a Near Estimate of the Tensile	
	Strength of Concrete from Various Concrete Ages	26
CHAPTER II	II: MATERIALS AND METHODS	
Table (3/1):	Cement Chemical Analysis	36
Table (3/2):	Fine Aggregate Sieve Analysis Results	36
Table (3/3):	Fine Aggregate Chemical and Physical Analysis Results	36
Table (3/4):	Coarse Aggregate Sieve Analysis Results	37
Table (3/5):	Coarse Aggregate Chemical and Physical Analysis Results	37
Table (3/6):	Concrete Constituents Proportions per Mix	40
CHAPTER V	: RESULTS	
Table (4/1):	Water Analysis Results	49
Table (4/2):	Initial Setting Time and Slump Value	50
Table $(4/3)$:	Compressive Strength for Concrete Mixed and Cured by	
	PTWW	50
Table (4/4):	Compressive Strength for Concrete Mixed and Cured by	
	STWW	51
Table (4/5):	Compressive Strength for Concrete Mixed and Cured by	
	TTWW	51

Table (4/6):	Compressive Strength for Concrete Mixed and Cured by	
	PW	52
Table (4/7):	Tensile Strength for Concrete Mixed and Cured by TWW	53
Table (4/8):	Tensile Strength for Concrete Mixed and Cured by PW	54
Table (4/9):	Bond Strength for Concrete Mixed and Cured by TWW	55
Table (4/10):	Bond Strength for Concrete Mixed and Cured by PW	55
Table (4/11):	Dry, Saturated, And Submerged Weight of Concrete	
	Specimens	57
Table (4/12):	Water Absorption and Voids Percentage	58
Table (4/13):	Concrete Bulk and Apparent Density	58
Table (4/14):	Specimen Weight in Grams during First Hour	59
Table (4/15):	Specimen Absorption (I) during First Hour (mm)	59
Table (4/16):	Specimen Weight in Kg from Two Hours to Six Hours	60
Table (4/17):	Specimen Absorption (I) from Two Hours to Six Hours	
	(mm)	60
Table (4/18):	Specimen Weight in Kg from One Day to Seven Days	61
Table (4/19):	Specimen Absorption (I) from One Day to Seven Days	
	(mm)	61
Table (4/20):	Specimen Initial Absorption and Secondary Absorption	
	(mm/\sqrt{sec})	66
Table (4/21):	Weight of Specimens Submerged in Sulfuric Acid	
	Solution (Kg)	67
Table (4/22):	Percentage Accumulative Weight Loss of Specimens	
	Submerged in Sulfuric Acid Solution	67
Table (4/23):	Compressive Strength at Age 90 Days for Control	
	Specimens and Specimens Submerged in Sulfuric Acid	
	Solution for 56 Days	68
Table (4/24):	Specimens' Weight and Length Loss after Abrasion Test	69
Table (4/25):	Potential Difference and Corrosion Possibility for Half	
	Cell Test	70
CHAPTER V	: DISCUSSION	
Table (5/1):	Maximum Concentrations for Harmful Pollutants in	
	Reinforced Concrete Mixing Water	71
Table (5/2):	Corrosion Possibility for Half Cell Test	85

CHAPTER I INTRODUCTION

1.1 BACKGROUND

Fresh water scarcity is considered a major problem worldwide, where sources of fresh water are diminishing as a result of pollution or climatic changes. Therefore, most countries with fresh water scarcity seek methods to reduce fresh water consumption on public and industrial scale.

Treated wastewater reuse has been a rapidly growing field worldwide as the whole international community is adopting sustainabilty measures in order to insure perserving of fresh water scarce resources, where it is common nowadays to find treated wastewater reuse applications in almost all water consuming fields, such as agriculture, landscaping, industrial applications, ground water replenishing and many other fields.

Recent researches in the treated wastewater reuse seek extending the fields where treated wastewater reuse is applied, by discovering other applications where reuse is feasible. These applications that are targeted usually requires a lower quality of water as the cost of wastewater treatment is kept a very important aspect in treated wastewater reuse.

1.2 STUDY OBJECTIVE

The main target of the thesis is to study the effects of using treated wastewater in the concrete industry as both mixing and curing water as an alternate to potable water, in order to assess the suitability of using such water in plain and reinforced concrete applications.

This study is aiming to find the limitations of concrete mixed and cured using several types of treated wastewater with different levels of treatment (Primary, Secondary, Tertiary) by assessing a variety of critical concrete properties when compared to conventional concrete mixed and cured using potable water.