

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

SUPERVISION SHEET

UTILIZATION OF SOME AGRICULTURAL WASTES IN PRODUCTION OF CELLULASE

By

Hala Mohamed Zaki Ali

B. SC. Agric. (Food Sci. & Tech.), Cairo University, 1986 M. SC. Agric. (Food Sci. & Tech.), Ain Shams University, 1993

Under the Supervision of:

Prof. Dr. Nagwa Mohamed Ali El-Shimi

Professor of Food Science and Technology Dept. Fac. of Agric., Cairo University

Prof. Dr. Abd El-Rahman Mohamed Khalafallah

Professor of Food Science and Technology Dept. Fac. of Agric., Cairo University

Prof. Dr. Nabih Abd El-Hamid Ibrahim

Director of Food Technology Res. Inst., Agricultural Research Center.

D

2002

APPROVAL SHEET

UTILIZATION OF SOME AGRICULTURAL WASTES IN PRODUCTION OF CELLULASE

By

HALA MOHAMED ZAKI ALI

B. SC. Agric. (Food Sci. & Tech.), Cairo University, 1986 M. SC. Agric. (Food Sci. & Tech.), Ain Shams University, 1993

This Thesis for Ph. D. Degree has been approved by:

PROF. DR. SAMIR MAHMOUD METWALLI Olletwalli Superioristic Professor of Food Science & Technology
Fac. of Agric., Kafr El-Sheikh, Tanta University

PROF. DR. MONA MOHAMED ABD EL-MAGIED Home. And El-Hagred
Professor of Food Science and Technology Dept.
Fac. of Agric., Cairo University

PROF. DR. NAGWA MOHAMED AHAMED EL-SHIMI Jagua M. Shim.
Professor of Food Science and Technology Dept.
Fac. of Agric., Cairo University

PROF. DR. ABD EL-RAHMAN MOHAMED KHALAFALLAH
Professor of Food Science and Technology Dept.
Fac. of Agric., Cairo University

Committee in charge: 10/1/2002

CAIRO UNIVERSITY

APPROVAL SHEET

UTILIZATION OF SOME AGRICULTURAL WASTES IN PRODUCTION OF CELLULASE

By

HALA MOHAMED ZAKI ALI

B. SC. Agric. (Food Sci. & Tech.), Cairo University, 1986 M. SC. Agric. (Food Sci. & Tech.), Ain Shams University, 1993

This Thesis for Ph. D. Degree has been approved by:

PROF. DR. SAMIR MAHMOUD METWALLI of letwall & 1 Professor of Food Science & Technology Fac. of Agric., Kafr El-Sheikh, Tanta University

PROF. DR. MONA MOHAMED ABD EL-MAGIED Homa Abd El-Hagred Fac. of Agric., Cairo University

PROF. DR. NAGIVA MOHAMED AHAMED EL-SHIMI Pagwa Slash Professor of Food Science and Technology Dept.

Fac. of Agric., Cairo University

PROF. DR. ABD EL-RAHMAN MOHAMED KHALAFALLAH Khalaf Allah

A. M.

Committee in charge: 10/1/2002

CAIRO UNIVERSITY

Name of Candidate: Hala Mohamed Zaki Ali

Degree: Ph.D.

Title of Thesis: Utilization of Some Agricultural Wastes in Production of Cellulose

Supervisors: Prof. Dr. Nagwa Mohamed Ahmed El-Shimi

Prof. Dr. Abd El-Rahman Mohamed Khalafallah

Prof. Dr. Nabih Abd El-Hamid Ibrahim

Department: Food Science and Technology

Branch: Food Technology

Approval: 10/1/2002.

ABSTRACT

The present study was carried out to evaluate some of the Egyptian agricultural wastes such as beet pulp and olive cake in the production of microbial cellulase and hemicellulase.

The suitable environmental conditions and nutrition requirements which gave the highest cellualolytic enzymes production for (*Trichoderma reesei* and *Sclerotium cepivorum*) were studied.

The obtained results could be summarized in the following:

- -The alkali treatment (4% NaOH) of beet pulp showed higher enzymes (cellulases and hemicellulases production than that obtained with olive cake. While the other used pretreatment came in descending order of acid hydrolyses, boiling water and untreated beet pulp and olive cake wastes with respect to celluloytic enzyme activity and specific activity.
- -For both wastes and with all pretreatments, the activity and specific activity values of hemicellulase were higher than those of carboxy methyl cellulose, whereas, filter paperase and cellobiase enzymes had the lowest values in this respect.
- -The maximum enzyme activity, specific activity and soluble protein by T. reesei were after 12 days, at 30 °C, pH 5, inoculum size 4% and 200 r.p.m. However the highest production of cellulolytic enzyme, soluble protein and specific activity by Sclerotium cepivorum were after 16days, at 21°C, pH. 4.5 and inoculum size 2%.
- -The optimum concentration of $(NH_4)_2SO_4$, KH_2 PO₄, Cacl2, Mg SO₄ and Tween 80 which resulted in the maximum value of soluble protein, cellulolytic enzymes and specific activity were 1.6, 4.0, 0.4, 0.6, and 2.0 g/l. respectively for T. reesei. However, the values of these parameters were, 1.4 $(NH_4)H_2PO_4$, 3.0, 0.3, 0.3 and 2.0g/l for S. cepivorum.
- -Vitamin B mixture raised the soluble protein, cellulolytic enzymes production and specific activity to the maximum values by using *T. reesei*. In spite of that sodium acetate increased these parameters obtained by *S. cepivorum*.
- -For both fungi strains, addition of 5.0% filter paper to the cultivation medium in the presence of 2.0% beat pulp gave the highest values of cellulolytic enzymes production, soluble protein and specific activity.
- -The maximum value of reducing sugars was obtained by saccharification of NaOH treated (rice straw and sugar cane bagasse) with enzyme filtrate of *T. reesei*. Meanwhile, the cellulolytic enzymes that produced from *S. cepivorum*, the maximum values of reducing sugars were obtained by hydrolysis of alkali treated rice straw.

Nagura El-Shimi

ACKNOWLEDGMENT

The author would like to express her heart appreciation and sincere gratitude to *Prof. Dr. Nagwa M. El-Shimi*, professor of Food Science and Technology, Faculty of Agriculture, Cairo University for her kind supervision, valuable guidance, constant advice and developing the manuscript that brought this study to a successful culmination.

I wish to express my profound indebtedness to *Prof. Dr. Abd*El-Rahman M. Khalafallah prof. of Food Science and Technology at the same department for his keen supervision, continuous encouragement, unlimited help and preparation of the manuscript.

Sincere appreciation and gratitude are to *Prof. Dr. Nabih Abd El-Hamid Ibrahim*, Director of Food Technology Res. Inst., Agric. Research Center, for his valuable supervision, interest, encouragement, for his continuous help.

Sincere appreciation is also extended to my colleagues in Food Technology Research Institute, Agricultural Research Center for their help during the course of this investigation.

CONTENTS

1.	INTRODUCTIVA	Page
1.		1
2	1.2. Aim of investigation	2
2.	REVIEW OF LITERATURE	3
	2.1. Chemical composition of ligno cellulosic wastes	3
	2.2. Pretreatments of lignocellulosic wastes	11
	2.2.1. Physical pretreatments	12
	2.2.2. Chemical pretreatment	16
	2.2.3. Physicochemical pretreatment	20
	2.3. Induction of cellulases by cellulolytic	
	microorganisms	23
	2.4. Cellulase enzymes and cellulose degradation	27
	2.5. Effect of cultivation conditions on microbial	
	growth and cellulase production	28
	2.5.1. Environmental conditions	29
	2.5.1.1. Incubation period	29
	2.5.1.2. Initial pH-value	31
	2.5.1.3. Incubation temperature	32
	2.5.1.4. Aeration and / or agitation	33
	2.5.1.5. Inoculum size	35
	2.5.2. Nutritional requirements	37
	2.5.2.1. Carbon source	37
	2.5.2.2. Nitrogen source	42
	2.5.2.3. Minerals salts	44
	2.5.2.3.1. Potassium phosphate	44
	2.5.2.3.2. Magnesium sulphate	46
	2.5.2.3.3. Calcium chloride	47
	2.5.2.4. Effect of surfactants	48
	2.5.2.5. Activators and stimulators	50
2	2.6. Application of cellulolytic enzymes	51

		Page
3.	MATERIALS AND METHODS	54
	3.1. Materials	54
	3.1.1. Waste substances	54
	3.1.2. Microorganisms	54
	3.1.3. Used media	55
	3.1.3.1. Maintaining media	55
	3.1.3.2. Growth and production media	55
	3.2. Methods	56
	3.2.1. Pretreatment methods of wastes	56
	3.2.1.1. Alkaline treatment	56
	3.2.1.2. Acidic treatment	56
	3.2.1.3. Boiling water pretreatment	57
	3.2.2. Microbial growth for enzymes production	57
	3.2.3. Optimization of cultivation conditions	59
	3.2.4. The studied fermentation parameters	59
	3.2.4.1. Cultivation conditions	59
	3.2.4.1.1. Incubation time	59
	3.2.4.1.2. pH value	60
	3.2.4.1.3. Incubation temperature	60
	3.2.4.1.4. Shaking rate	60
	3.2.4.1.5. Inoculum size	60
	3.2.4.2. Nutritional requirement of fungi	60
	3.2.4.2.1. Carbon source concentration	60
	3.2.4.2.2. Nitrogen sources	61
	3.2.4.2.3. Minerals salt concentrations	61
	3.2.4.2.4. Tween 80 concentrations	61
	3.2.4.2.5. The activators	62
	3.2.4.2.6. Filter paper	62

		Page
	3.2.5. Analytical methods	62
	3.2.5.1. Chemical composition analysis	62
	3.2.5.2. Determination of cellulose	62
	3.2.5.3. Determination of lignin	63
	3.2.5.4. Determination of hemicellulose	63
	3.2.5.5. Determination of soluble protein	64
	3.2.5.6. Determination of glucose	65
	3.2.5.7. Determination of reducing sugars	65
	3.2.6. Enzymes assay	66
	3.2.7. Estimation of hydrolytic potential of the	
	produced enzymes	68
4.	RESULTS AND DISCUSSION	69
	4.1. Chemical composition of the used agricultural	
	wastes	69
	4.2. Effect of waste pretreatments on the production	
	of cellulase by different microorganisms	
	4.3. Factors affecting cellulases production	80
	4.3.1. Environmental conditions	81
	4.3.1.1. Effect of incubation period	81
	4.3.1.2. Effect of pH values	89
	4.3.1.3. Effect of incubation temperature	97
	4.3.1.4. Effect of shaking rates	105
	4.3.1.5. Effect of inoculum size	109
	4.3.2. Nutritional requirements	118
	4.3.2.1. Effect of beet pulp and olive cake	
	concentration	118
	4.3.2.2 Effect of nitrogen sources	127

				Page
		4.3.2.3.	Effect of nitrogen level using ammonium sulphate (NH ₄) ₂ SO ₄ and	
			diammonium phosphate [(NH ₄) ₂ HPO ₄]	131
		4.3.2.4.	Effect of mono potassium phosphate	
			(KH ₂ PO ₄) level	138
		4.3.2.5.	Effect of calcium chloride (CaCl ₂) level	143
		4.3.2.6.	Effect of magnesium sulphate (MgSO ₄ .	
			7H ₂ O) level	148
	4.	.3.3. Sti	mulators and activators factors	154
		4.3.3.1.	Effect of Tween 80 concentration	154
		4.3.3.2.	Effect of activators	158
		4.3.3.3.	Effect of filter paper	164
	4.4.	Hydrolyt	ic potential of the produced enzymes	168
5.		SUMMA	ARY AND CONCLUSIONS	174
6.		REFER	ENCES	180
		ARABIC	CSUMMARY	

LIST OF TABLES

No	Title	Page
1-	Chemical composition of some agricultural wastes on dry weight basis	70
2-	Effect of different treatments on the production of cellulases from some waste materials using Cellulomonas uda.	74
3-	Effect of different treatments on the production of cellulases from some waste materials using <i>Trichoderma viride</i>	75
4-	Effect of different treatments on the production of cellulases from some waste materials using <i>Trichoderma reesei</i>	76
5-	Effect of different treatments on the production of cellulases from some waste materials using <i>Sclerotium cepivorum</i>	77
6-	Effect of incubation period on the production of cellulases using <i>Trichoderma reesei</i> and 1% beet pulp	82
7-	Effect of incubation period on the production of cellulases using <i>Trichoderma reesei</i> and 1% olive cake.	83
8-	Effect of different incubation period on the production of cellulases using <i>Sclerotium cepivorum</i> and 1% beet pulp	84
9-	Effect of different incubation period on the production of cellulases using <i>Sclerotium cepivorum</i> and 1% olive cake	85
10-	Effect of different pH values on the production of cellulases using <i>Trichoderma reesei</i> and 1% beet pulp	91