

#### Correlations between Right Heart Catheterization, Echocardiography and Six Minute Walk Test in Assessment Severity of Pulmonary Arterial Hypertension

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases

By

Mohamed Adel Mekki

MBBCH Alexanderia University

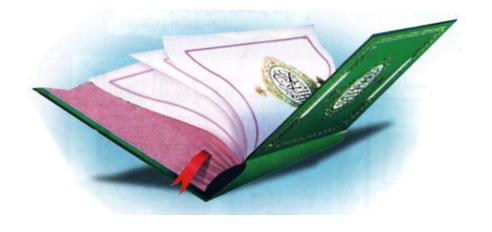
Under Supervision of

#### Prof. Emad Eldin Abd Elwahab Koraa

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

#### **Prof. Ayman Abd Elhamid Farghaly**

Professor of Chest Diseases Military Medical Academy


#### **Prof. Hesham Atef Zidan**

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2019

# بسم الله الرحمن الرحيم

# وقُل اعْمَلُوا فَسَيْرَكَى اللهُ عَمَلُوا فَسَيْرَكَى اللهُ عَمَلُوا فَسَيْرَكَى اللهُ عَمَلُوكُ وَالمُؤْمِنُونَ عَمَلُكُ مُ وَمَرَسُولُهُ وَالمُؤْمِنُونَ عَمَلُكُ مُ وَمَرَسُولُهُ وَالمُؤْمِنُونَ



صدق الله العظيم [سورة: التوبة - الآية: ١٠٥]

#### Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Emad Eldin Abd Elwahab**Koraa, Professor of Chest Diseases, Faculty of Medicine,
Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Ayman Abd**Elhamid Farghaly, Professor of Chest Diseases,
Military Medical Academy, for his sincere efforts, fruitful
encouragement.

I am deeply thankful to **Prof. Wesham Atef Zidan**, Professor of Chest Diseases, Faculty of Medicine,
Ain Shams University, for his great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohamed Adel Mekki

# List of Contents

| Title                           | Page No. |
|---------------------------------|----------|
| List of Tables                  | 5        |
| List of Figures                 | 7        |
| List of Abbreviations           | 9        |
| Introduction                    | 1 -      |
| Aim of the Work                 | 5        |
| Review of Literature            |          |
| Pulmonary Arterial Hypertension | 6        |
| Six Minute Walk Test            | 39       |
| Echocardiography                | 52       |
| Right Heart Catheterization     | 56       |
| Patients and Methods            | 61       |
| Results                         | 67       |
| Discussion                      | 100      |
| Summary                         | 109      |
| Conclusion                      | 114      |
| Recommendations                 | 115      |
| References                      | 116      |
| Arabic Summary                  |          |

### List of Tables

| Table No.          | Title                                                                                                   | Page No.  |
|--------------------|---------------------------------------------------------------------------------------------------------|-----------|
| <b>Table</b> (1):  | Demographic and clinical data am                                                                        | -         |
| <b>Table (2):</b>  | Immunlogical profile data among a patients:                                                             |           |
| <b>Table (3):</b>  | ABG data among 30 PAH patients:                                                                         | 71        |
| <b>Table (4):</b>  | PFT data among 30 PAH patients:                                                                         | 71        |
| <b>Table (5):</b>  | Radiological data among 30 PAH pat                                                                      | ients:72  |
| <b>Table (6):</b>  | Echocardiographic data among 3 patients:                                                                |           |
| <b>Table (7):</b>  | RHC data among 30 PAH patients:                                                                         | 74        |
| <b>Table (8):</b>  | 6-MWT test among 30 PAH patients:                                                                       | 75        |
| <b>Table (9):</b>  | Comparison between the 3 gro-<br>regards socio-demographic data<br>Kruskal-Wallis and Chi square tests: | using     |
| <b>Table (10):</b> | Comparison between the 3 grownegards basic clinical data using F Wallis and Chi square tests:           | Kruskal-  |
| <b>Table (11):</b> | Comparison between the 3 gro-<br>regards Echocardiographic data<br>Kruskal-Wallis and Chi square tests: | using     |
| <b>Table (12):</b> | Comparison between the 3 groregards RHC data using Kruskal-Watest:                                      | ıllis and |
| <b>Table (13):</b> | Comparison between the 3 groregards 6-MWT test using Kruska test:                                       | l-Wallis  |

### Tist of Tables cont...

| Table No.          | Title                                                                               | Page No.   |
|--------------------|-------------------------------------------------------------------------------------|------------|
| <b>Table (14):</b> | Comparison between the 3 regards prognostic data using Wallis and Chi square tests: | g Kruskal- |
| <b>Table (15):</b> | Multiple regression model for taffecting mPAP (Echocardiography Forward method:     | phy) using |
| <b>Table (16):</b> | Multiple regression model for taffecting mPAP (RHC) using method:                   | g Forward  |
| <b>Table (17):</b> | Multiple regression model for taffecting 6-MWT using Forward n                      |            |
| <b>Table (18):</b> | Roc-curve of mPAP methods patients with CHD-PAH:                                    | _          |
| <b>Table (19):</b> | Roc-curve of mPAP methods patients with CTD-PAH:                                    | -          |
| Table (20):        | Roc-curve of mPAP methods patients with IPAH:                                       | -          |

# List of Figures

| Fig. No.   | Title Page N                                                                                                               | <b>Vo</b> . |
|------------|----------------------------------------------------------------------------------------------------------------------------|-------------|
| Fig. (1):  | Clinical Classification of Pulmonary<br>Hypertension                                                                       | 8           |
| Fig. (2):  | Drugs and toxins indced PAH                                                                                                | 11          |
| Fig. (3):  | Pathophysiology of pulmonary arterial hypertension                                                                         | 19          |
| Fig. (4):  | Diagnostic algorithm for suspected pulmonary hypertension patients                                                         | 24          |
| Fig. (5):  | Pulmonary Hypertension assessment by Echocardiography                                                                      | 26          |
| Fig. (6):  | Pulmonary hypertension assessment by computed tomography                                                                   |             |
| Fig. (7):  | Borg Dyspnea Scale                                                                                                         | 41          |
| Fig. (8):  | Echocardiographic probability of pulmonary hypertension in symptomatic patients with a suspicion of pulmonary hypertension | 54          |
| Fig. (9):  | PA ¼ pulmonary artery                                                                                                      | 55          |
| Fig. (10): | RHC theater                                                                                                                | 58          |
| Fig. (11): | RHC theater in KobryElqoba Military chest hospital.                                                                        | 65          |
| Fig. (12): | WHO FC among 30 PAH patients                                                                                               | 69          |
| Fig. (13): | Clinical classification of PAH among 30 PAH patients.                                                                      | 69          |
| Fig. (14): | Comparison between the 3 groups as regards age                                                                             | 77          |
| Fig. (15): | Comparison between the 3 groups as regards PVR                                                                             | 81          |
| Fig. (16): | Comparison between the 3 groups as regards 6-MWT.                                                                          | 84          |

#### Tist of Figures cont...

| Fig. No.   | Title                                                      | Page No. |
|------------|------------------------------------------------------------|----------|
| Fig. (17): | Comparison between the 3 groups as RA area (Echo)          |          |
| Fig. (18): | Comparison between the 3 groups as RAP (RHC).              |          |
| Fig. (19): | Comparison between the 3 groups as cardiac index           |          |
| Fig. (20): | Comparison between the 3 groups as clinical signs of Rt HF |          |
| Fig. (21): | Comparison between the 3 groups as syncope                 |          |
| Fig. (22): | Comparison between the 3 groups as WHO FC.                 | •        |
| Fig. (23): | Comparison between the 3 groups as Pericardial effusion.   |          |
| Fig. (24): | Correlation between mPAP (Echo) and                        | d age90  |
| Fig. (25): | Correlation between mPAP (Echo) an (Echo).                 |          |
| Fig. (26): | Correlation between mPAP (RHC) a (RHC)                     |          |
| Fig. (27): | Correlation between mPAP (RHC) a (RHC).                    |          |
| Fig. (28): | Correlation between 6-MWT and age                          | 94       |
| Fig. (29): | Correlation between 6-MWT and F (Echo).                    |          |
| Fig. (30): | ROC curves of CHD-PAH prediction                           | 96       |
| Fig. (31): | ROC curve of IPAH prediction                               | 99       |

# Tist of Abbreviations

| Abb.         | Full term                                             |
|--------------|-------------------------------------------------------|
| %            | Percentage                                            |
|              | Arterial blood gases                                  |
|              | Antinuclear Antibodies                                |
|              | Anti-cyclic citrullinated peptide                     |
| -            | Antidouble stranded DNA                               |
|              | Antiscleroderma 70                                    |
| <b>AUC</b>   |                                                       |
| <i>BMI</i>   |                                                       |
| <i>BP</i>    | •                                                     |
|              | Complete Blood Count                                  |
|              | Calcium Channel Blockers                              |
| <i>CHD</i>   | Congenital Heart Disease                              |
| <i>co</i>    | _                                                     |
|              | Chronic Obstructive Pulmonary Disease                 |
|              | Connective Tissue Disease                             |
| <i>CTD</i>   | Connective Tissue Diseases                            |
| <i>CTEPH</i> | Chronic Thromboembolic Pulmonary                      |
|              | Hypertension                                          |
| <i>CXR</i>   | Chest X ray                                           |
| <b>DLCO</b>  | Diffusing Capacity of the Lung for Carbon<br>Monoxide |
| <i>ECHO</i>  | Echocardiography                                      |
| <i>ESC.</i>  | European Respiratory Society                          |
|              | Erythrocyte Sedimentation Rate                        |
| ET-1         | Endothelin-1                                          |
| ETRA         | EndothelinA                                           |
| ETRB         | EndothelinB                                           |

## Tist of Abbreviations cont...

| Abb.       | Full term                                                  |
|------------|------------------------------------------------------------|
| FC         | Functional class                                           |
|            | Forced Expiratory Volume in One Second                     |
|            | Forced Vital Capacity                                      |
| <i>HF</i>  |                                                            |
|            | Human Immunodeficiency Virus                               |
| HR         |                                                            |
|            | High-Resolution Computed Tomography                        |
|            | Interstitial Lung Disease                                  |
|            | International Normalized Ratio                             |
|            |                                                            |
| IPAH       | Idiopathic Pulmonary Arterial<br>Hypertension              |
| ISHLT      | International Society of Heart and Lung<br>Transplantation |
| IVS        | Inter-Ventricular Septum                                   |
|            | Kidney Function Test                                       |
| <i>LA</i>  | ·                                                          |
| <i>LFT</i> | •                                                          |
| LV         |                                                            |
| mmHg       | •                                                          |
| •          | Mean pulmonary artery pressure                             |
|            | Magnetic Resonance Imaging                                 |
|            | Nuclear Factors of Activated T-Cells                       |
| <i>NO</i>  | •                                                          |
|            | Pulmonary Arterial Hypertension                            |
| PaO2       |                                                            |
|            | Pulmonary Artery Pressure                                  |
|            | Pulmonary Artery Smooth Muscle Cells                       |

# Tist of Abbreviations cont...

| Abb.                          | Full term                                 |
|-------------------------------|-------------------------------------------|
| PAWP                          | . Pulmonary Artery Wedge Pressure         |
|                               | . Pulmonary Capillary Wedge Pressure      |
|                               | . Phosphodiesterase type-5                |
| PGI2                          |                                           |
|                               | . Pulmonary Hypertension                  |
|                               | . Pulmonary Veno-Occlusive Disease        |
|                               | . Pulmonary vascular resistance           |
| <i>RA</i>                     | Č                                         |
|                               | . Right Atrial Pressure                   |
|                               | . Right-Sided Heart Catheterization       |
|                               | . Receiver operating Characteristic       |
| <i>RT</i>                     | . Right                                   |
| <i>RV</i>                     | . Right Ventricle                         |
| <i>RVP</i>                    | . Right ventricular Pressure              |
| SaO2                          | . Oxygen Saturation                       |
| <i>SD</i>                     | . Standard deviation                      |
| SE                            | . Standard Error                          |
| <i>SPAP</i>                   | . Systolic Pulmonary Artery Pressure      |
| SSRIs                         | . Selective serotonin reuptake inhibitors |
| <i>TLC</i>                    | . Total Lung Capacity                     |
| TR                            | . Tricuspid Regurgitation                 |
| $V \backslash Q \ scan \dots$ | . Ventilation Perfusion Scan              |
| <i>VIP</i>                    | . Vasoactive Intestinal Peptide           |
| <i>WHO</i>                    | . World Health Organization               |

#### Introduction

pulmonary arterial hypertension (PAH) is a disease of the pulmonary vasculature leading to an increase in pulmonary vascular pressure (mean arterial pulmonary pressure ≥25 mm Hg) causing exertional dyspnea and progressive right heart failure (*Galie et al.*, 2015).

There is a marked increase in the pulmonary vascular resistance resulting in right ventricular remodeling and eventual failure, which, in the majority of cases, results in the patient death (*Tuder et al., 2013*).

Given the evolving definition of PH, the incidence and prevalence of the disease is difficult to define (*Strange et al.*, 2012).

Regardless of etiology, PH is characterized by limited exercise capacity and a progressive increase in breathlessness. Until recently, treatment options for PH remained limited and patient prognosis poor. One early registry of PH patients reported a median survival time of 2.8 years post diagnosis without treatment (*D'Alonzo et al.*, 1991).

The World Health Organization functional class (WHO-FC), despite its interobserver variability, remains one of the most powerful predictors of survival, not only at diagnosis, but also during follow-up. A worsening FC is one of the most alarming indicators of disease progression, which should

trigger further diagnostic studies to identify the causes of clinical deterioration (*Nickel et al.*, 2012).

The 6-minute walking test (6MWT), a submaximal exercise test, remains the most widely used exercise test in PH centers. The test is easy to perform, inexpensive and familiar to patients and centers. As with all PH assessments, 6MWT results must always be interpreted in the clinical context (Savarese et al., 2012).

The prognostic value of this parameter lies not in the change of 6MWD in response to treatment, but most of all in its absolute value, particularly if it is lower than 250 m (Benza et al., 2010). There was significantly lower mortality in patients with 6MWD higher than 440 m (Farber et al., 2015).

Echocardiography is commonly used for diagnostic and treatment monitoring purposes in patients with PAH due to its wide availability, non-invasive nature, and reproducibility (Eysmann et al., 1989).

A comprehensive echocardiographic assessment includes a description of chamber sizes, particularly of the Right Atrium and Right Ventricle area, the magnitude of tricuspid regurgitation, the Left Ventricle eccentricity index and RV contractility, which can be, determined by several variables, including RV longitudinal systolic strain/strain rate and RV fractional area change, Tei index and tricuspid annular plane systolic excursion (TAPSE) (Fine et al., 2015).

European Society of Cardiology Guideline suggests grading the probability of PH based on TRV at rest and on the presence of additional pre-specified echocardiographic variables suggestive of PH. The probability of PH may then be judged as high, intermediate or low (*Rudski et al.*, 2010).

RHC is a technically demanding procedure that requires meticulous attention to detail to obtain clinically useful information. To obtain high-quality results and to be of low risk to patients, the procedure should be limited to expert centers (*Kovacs et al.*, 2014).

RHC is required to confirm the diagnosis of PAH and chronic thromboembolic pulmonary hypertension, to assess the severity of haemodynamic impairment and to undertake vasoreactivity testing of the pulmonary circulation in selected patients. When performed at expert centers, these procedures have low morbidity (1.1%) and mortality (0.055%) rates (*Hoeper et al.*, 2006).

Current diagnostic criteria for pulmonary artery hypertension based on right heart catheter. Mean pulmonary arterial pressure >25mmHg at rest a pulmonary capillary wedge pressure < 15mmHg and by pulmonary vascular resistance >3 Wood Units (*Frost et al., 2013*).

Haemodynamics assessed by RHC provide important prognostic information, both at the time of diagnosis and during

follow-up. RA pressure, cardiac index (CI) and mixed venous oxygen saturation (SvO2) are the most robust indicators of RV function and prognosis, whereas mPAP provides little prognostic information (except for Calcium Channel Blockers responders) (Nickel et al., 2012).