

Incidence of Dysplasia in Patients with Barrett's Esophagus

Thesis

Submitted for Partial Fulfillment of Master Degree In General Surgery

Presented by Karim Wahid Shawky

MB.B.CH, Faculty of Medicine, Ain Shams University

Supervised by

Prof.Dr.Hisham Abd EL Raouf El Akkad

Professor of General Surgery Faculty of Medicine, Ain Shams University

Dr. Amr Mohammed Mahmoud El Hefny

Associate Professor of General Surgery Faculty of Medicine, Ain Shams University

Dr. Mohammed Abd Almegeed Al Sayed

Lecturer of General Surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Wisham Abd &L Raouf &l**Akkad, Professor of General Surgery Faculty of Medicine,

Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Amr Mohammed Mahmoud & Hoefny,**Associate Professor of General Surgery Faculty of Medicine,
Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohammed Abd**Almegeed Al Sayed, Lecturer of General Surgery Faculty
of Medicine, Ain Shams University, for his great help, active
participation and guidance.

Karim Wahid Shawky

List of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	7
List of Figures	
Introduction	
Aim of this Study	3
Review of Literature	
Historical evolution of the diagnostic criteria Barrett's esophagus	
 Histo-Pathology of Barrett's Esophagus 	7
Risk factors in Barrett's Esophagus	18
Diagnosis of Barret's Esophagus	26
Management of Barrett's Esophagus	32
Patients and Methods	
Results	50
Discussion	61
Summary	65
Conclusion	67
References	68
Arabic Summary	

List of Abbreviations

Abb.	Full term
95% CI	95% Confidence interval
	American Gastro-enterological Association
	Argon Plasma Coagulation
	Regression coefficients
	Barrett's esophagus
	Body Mass Index
	Benign Barrett's and Cancer Taskforce
	British Society of Gastroenterology
	Circumferential extent and the Maximum extent
CLE	Confocal Laser Endomicroscopy
	Cyclooxygenase-2
DM	Diabetes mellitus
EMR	Endoscopic Mucosal Resection
EUS	Endoscopic Ultrasonography
GERD	Gastro-esophageal reflux disease
GOJ	Gastro-esophageal junction
HGD	High grade dysplasia
IM	Intestinal Metaplasia
LGD	Low grade dysplasia
LNF	Laparoscopic Nissen Fundoplication
NF	Nissen Fundoplication
NSAIDs	Non steroidal anti-inflammatory drugs
NSE	Neo-squamous Epithelium
OCT	Optical Coherence Tomography
OR	. Odds Ratio
OR	Odds ratio
pCLE	Probe-based system Confocal Laser Endomicroscopy

List of Abbreviations Cont...

Abb.	Full term
PDT	. Photodynamic Therapy
PGE-2	. Prostaglandin E-2
PPI	. Proton pump inhibitor
P-value	. Probability value
RFA	. Radiofrequency Ablation
S.E	Standard error of regression coefficients
SCJ	. Squamo-columnar Junction
TFF3	. Trefoil Factor-3
TNE	Trans-nasal Endoscopy
VLE	. Volumetric Laser Endomicroscopy
Wald	. Statistical test
WLE	. White Light Endoscopy

List of Tables

Table No.	Title	Page No.
Table (1):	Comparison between BSG guideline guidelines and BOBCAT consensus diagnosis of Barrett's esophagus	s in the
Table (2):	Guidelines for management of patient BE without dysplasia	
Table (3):	Guidelines for management of with BE with dysplasia	
Table (4):	Showing percentage of each risk present in relation to the total number.	patient
Table (5):	Showing the incidence of dyspl relation to gender and age	
Table (6):	Showing the incidence of dyspl relation to smoking, obesity (BMI > DM.	asia in
Table (7):	Showing the incidence of dyspl relation to reflux duration and treatment received as PPIs	medical
Table (8):	Showing the incidence of dyspl relation to esophagitis.	asia in
Table (9):	Showing the incidence of dyspl relation to presence of hiatus hernia.	asia in
Table (10):	Logistic regression analysis for pred dysplasia.	ictors of

List of Figures

Fig. No.	Title Page	No.
Fig. (1):	Norman Barrett	4
Fig. (2):	Normal distal esophagus and examples of Barrett's esophagus.	
Fig. (3):	Intestinal metaplasia in esophageal columnar epithelium	11
Fig. (4):	The Prague classification showing the circumferential (C) and maximum (M) extent	
Fig. (5):	Progressive sequence in Barrett's esophagus	14
Fig. (6):	Spectrum of dysplasia in Barrett's esophagus	17
Fig. (7):	Chromoendoscopy using Lugol's iodine in the esophagus	
Fig. (8):	Comparison between pCLE images and histopathological images	
Fig. (9):	Volumetric Laser Endomicroscopy	29
Fig. (10):	Tethered-capsule Endomicroscopy	30
Fig. (11):	The Cytosponge expanded (left) and encapsulated (right)	
Fig. (12):	Nissen fundoplication	
Fig. (13):	Esophagectomy operation	36
Fig. (14):	Endoscopic mucosal resection (EMR) for early esophageal adenocarcinoma	
Fig. (15):	Radiofrequency ablation (RFA) of Barrett's esophagus	
Fig. (16):	A 71-year-old male with long-segment Barrett's esophagus	
Fig. (17):	Argon plasma coagulation of residual Barrett's mucosa	44
Fig. (18):	Pie chart showing the gender of the candidate patients.	51

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (19):	Column chart showing percentage of s obese (BMI > 35) and diabetic patient study.	s in the
Fig. (20):	Pie chart showing percentage of patient received a medical treatment for reflux.	
Fig. (21):	Column chart showing percental esophagitis, hiatus hernia and diamong the patients	ysplasia
Fig. (22):	Column chart showing percentage of p developed dysplasia in relation to gene	
Fig. (23):	Column chart showing the mean developing dysplasia	
Fig. (24):	Column chart showing percentage of percentage of percentage developed dysplasia in relation to subscript and DM	moking,
Fig. (25):	Column chart showing the mean duration to develop dysplasia	
Fig. (26):	Column chart showing percentage of percentage of percentage developed dysplasia in relation to reflux treatment.	patients eceiving
Fig. (27):	Column chart showing percentage of p developed dysplasia in relation to esop	•
Fig. (28):	Column chart showing percentage of presentation developed dysplasia in relation to presentatus hernia.	sence of

Introduction

arrett's esophagus is a condition which predisposes towards development of esophageal adenocarcinoma, a highly lethal tumour which has been increasing in incidence over the past three decades. There have been tremendous advances in the field of Barrett's esophagus, not only in diagnostic modalities, but also in therapeutic strategies available to treat this premalignant disease (*Tan et al., 2017*).

Barrett's esophagus patients progress through a phenotypic sequence of no dysplasia, low-grade dysplasia, high-grade dysplasia and then into esophageal adenocarcinoma, although the time course is highly variable. Furthermore, some patients may progress directly to cancer without prior detection of dysplasia of any grade. Currently, dysplasia remains the only practical factor useful for identifying patients at increased risk for the development of esophageal adenocarcinoma in clinical practice (*Gaddam et al., 2013*).

A number of endoscopic, histologic and epidemiologic risk factors identify Barrett's esophagus patients at increased risk for progression to high-grade dysplasia and esophageal adenocarcinoma. Endoscopic factors include segment length, mucosal abnormalities as esophagitis and the 12 to 6 o'clock hemisphere of the esophagus. Epidemiologic risk factors include

aging, male gender, obesity, and smoking. Factors that may protect against the development of adenocarcinoma include a diet rich in fruits and vegetables, and the use of proton pump inhibitors, aspirin/NSAIDs and statins (Falk, 2015).

AIM OF THIS STUDY

The aim of this study is to evaluate the incidence of dysplasia in patients with Barrett's esophagus in relation to risk factors such as: gender, smoking, obesity, patient's age, duration of reflux, treatment received, associated disease as DM and esophageal histopathology.

Chapter 1

HISTORICAL EVOLUTION OF THE DIAGNOSTIC CRITERIA FOR BARRETT'S ESOPHAGUS

arrett's esophagus gets its name from the pioneering ■ British surgeon, Norman Barrett who in 1950 published his paper 'Chronic peptic ulcer of the esophagus and esophagitis' where he described the columnar lined esophagus. Over the next four decades, disagreements regarding the distal esophageal histology were prevalent, with some arguing that the ulcers in the distal esophagus were not esophageal, but gastric ulcers within an intra-thoracic stomach in patients with congenital short esophagus (Barrett, 1950).

Fig. (1): Norman Barrett (https://www.readersdigest.co.uk/health/healthconditions/all-you-need-to-know-about-barretts-oesophagus).

In 1953, Allison and Johnstone published an influential report rejecting Barrett's hypothesis, and suggesting that the tubular structure within the distal thorax could not be stomach since it: 1) lacked an outer peritoneal lining; 2) had musculature identical to esophagus; 3) consisted of columnar epithelium interspersed with squamous islands; 4) lacked mucosal oxyntic cells; and 5) had mucosal glands typical of the esophagus (Allison and Johnstone, 1953).

Subsequent re-assessment of these gastric ulcers by Barrett led him to acknowledge his prior misjudgement, and he published a revised report in 1957, redefining this tubular structure as 'Lower esophagus lined by columnar epithelium' (Barrett, 1957).

Between 1960 to the mid-1970s, there were varying histological descriptions of the columnar subtypes in the distal esophagus including junctional (gastric cardiac epithelium), gastric-fundal, and intestinal epithelium with goblet cells (Hayward, 1961).

In the 1980s it was established that chronic gastroesophageal reflux disease and the presence of a hiatal hernia were risk factors for Barrett's esophagus and it grew to be appreciated that these could distort the anatomic landmarks of the GOJ during endoscopy making a precise diagnosis difficult. To avoid error, diagnostic criteria for Barrett's esophagus were established that a minimum of 3 cm columnar lining is required to diagnose Barrett's esophagus and for enrolment into clinical studies. By the mid-1980s, the association between Barrett's esophagus and esophageal adenocarcinoma well established and it became clear that intestinal metaplasia had a mosaic distribution with strong predisposition to dysplasia which led to intestinal metaplasia becoming the defining feature for Barrett's esophagus (Hamilton and Smith, 1987).

In the mid-1990s, Spechler challenged the conventional practice of only performing biopsies on Barrett's esophagus ≥ 3 cm because he demonstrated that 18% of patients with endoscopically apparent Barrett's esophagus measuring less than 3 cm still contained intestinal metaplasia. These results, coupled with the categorization of Barrett's esophagus into short (≤ 3 cm) and long segments (≥ 3 cm) have proved essential in shaping the diagnostic criteria for Barrett's esophagus over the years (Spechler et al., 1994).

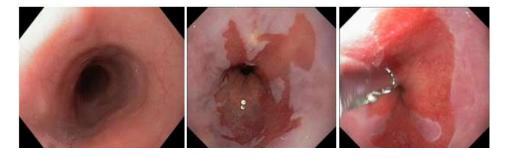


Fig. (2): Normal distal esophagus and examples of Barrett's esophagus. (http://www.gastromedicine.com.au/barretts-oesophagus/).