

Ain Shams University
Faculty of Engineering
Electrical power and Machines Dept.

LOW VOLTAGE RIDE THROUGH CAPABILITY IMPROVEMENT OF GRID-CONNECTED PHOTOVOLTAIC POWER PLANTS

Master Thesis By

Eng. Omnia Soliman Elazab

Submitted in partial fulfillment of the Requirements for the Master Degree in Electrical Engineering

Supervised By

Prof. Dr. Hany Mohamed Hasanien

Professor - Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Dr. Amr Magdy Abdin

Assistant Professor-Electrical Power and Machines Dept. Faculty of Engineering, Ain Shams University

Approval Sheet

For The thesis:

LOW VOLTAGE RIDE THROUGH CAPABILITY IMPROVEMENT OF GRID-CONNECTED PHOTOVOLTAIC POWER PLANTS

Presented by

Eng. Omnia Soliman Elazab

Submitted in partial fulfillment of the requirements for the Master degree in electrical engineering

Approved by

Name				<u>Signature</u>
Prof. Dr. Hany Mohame	ed Hasan	ien		
Dr. Amr Magdy Abdin				
	Date:	/	/	

Examiners Committee

The thesis:

LOW VOLTAGE RIDE THROUGH CAPABILITY IMPROVEMENT OF GRID-CONNECTED PHOTOVOLTAIC POWER PLANTS

Presented by

Eng. Omnia Soliman Elazab

Submitted in partial fulfillment of the requirements for the Master degree in electrical engineering

Name, title and affiliation

Signature

1. Prof. Dr. Essam Mohamed Aboul Zahab

Electrical Power and Machines Department Faculty of Engineering Cairo University

2. Prof. Dr. Almoataz Yousef Abd Elaziz

Electrical Power and Machines Department Faculty of Engineering Ain Shams University

3. Prof. Dr. Hany Mohamed Hasanien

Electrical Power and Machines Department Faculty of Engineering Ain Shams University

Statement

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for Master degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name : Omnia Soliman Elazab

Signature:

Date : / /2018

To

My husband, my children, my brothers, my sister and their families.

Acknowledgements

The author would like to express her sincerest gratitude to **Prof. Dr. Hany Mohamed Hasanien and Dr. Amr Magdy Abdin** for the great support, excellent supervision and encouragement shown during the period of this study.

Special thanks to the Electrical Power and Machines Department, Faculty of Engineering; Ain shams University, for the great support and encouragement.

ABSTRACT

Among the world of renewable energy sources, solar energy is growing powerfully and robustly. There are many advantages for the photovoltaic (PV) systems including small installation time, easy circuitry, long life of operation, and low maintenance requirements. The solar power plants are connected to the electric grid on large scale. PV systems prices were continuously decreasing during the last decade.

It is essential to model the PV module to use it in the PV system simulation process, this model plays an important role through the dynamic analysis of these systems and helps to predict their behavior under different operating conditions. The mathematical model of the PV module is a nonlinear I-V characteristic including several unknown parameters as the PV manufacturers' data are not sufficient. The equivalent circuit models used to describe the non-linear I-V relationship are: single, double and three diode models. The three models are introduced to achieve higher level of accuracy. The parameter extraction problem of the three different models is formulated as a search optimization problem. The fitness function is evaluated by minimizing the Root-Mean-Square error between calculated current and measured current experimental data through adjusting parameters of the PV models. This optimization is executed through a new nature-inspired meta-heuristic optimization technique known as the Whale Optimization Algorithm (WOA).

The WOA-based PV models are validated by the simulation results, which are carried out under various environmental conditions using MATLAB program. The effectiveness of the WOA-based PV models is checked by comparing their results

with that obtained using other optimization methods. To obtain a realistic study, these simulation outcomes are compared with the experimental outcomes of a Kyocera KC200GT PV module. Moreover, the WOA-based PV model is efficiently evaluated by comparing the absolute current error of this model with that obtained using other PV models. Using this meta-heuristic algorithm application, an accurate PV model can be obtained.

The designed PV system consists of a PV array connected to the electric grid through a DC boost converter, a DC-link capacitor, a grid-side inverter, a step up transformer, and transmission lines. Control Systems are connected to the PV systems in order to improve the performance of PV system and enhance the low voltage ride through (LVRT) capability during abnormal operation conditions. An open fractional voltage control strategy that satisfies maximum power point tracking operation is applied to the DC-DC converter. A cascaded voltage control technique that controls both the voltage at the point of common coupling and the DC link voltage at the grid-side inverter is applied. Both of the control systems are based on Proportional Integral (PI) controllers. Response surface methodology (RSM) is used to create the fitness function for this system through Minitab program. To get PI controller parameters that guarantee the optimum design of the controllers, the fitness function is optimized using a new swarm intelligence technique called Salp Swarm Algorithm.

The proposed control system is tested under various fault scenarios to examine the validity of the control system. The results show that the proposed control system works with high performance under different fault conditions.

TABLE OF CONTENT

	Abstract	VIII
	List Of Contents	X
	List Of Figures	XIV
	List Of Tables	XVII
	List Of Abbreviations	XVIII
	List Of Symbols	XIX
	Chapter 1	
	INTRODUCTION	
1.1	General	1
1.2	Objectives Of The Work	4
1.3	Thesis Layout	5
	Chapter 2	
	PHOTOVOLTICS TECHNOLOGY OUTLINE	
2.1	General	6
2.2	History Of Photovoltaic	6
2.3	How A PV Cell Works	7
2.4	Types Of PV Panels	9
2.4.1	 Monocrystalline Silicon 	9
2.4.2	Polycrystalline Silicon Cell	9

2.4.3	• Thin-Film Solar Cells (Tfsc)	10
2.5	Electrical Properties Of PV Modules	11
2.5.1	• Short-Circuit Current	12
2.5.2	 Open-Circuit Voltage 	13
2.5.3	 Resistive Effects 	13
2.5.3.1	 Series Resistance 	14
2.5.3.2	 Parallel Resistance 	15
2.5.4	• Maximum Power (P _{max})	16
2.5.5	 Effect Of Temperature &- Irradiation Variation 	17
2.6	Types Of PV Systems	18
2.6.1	 Grid-Connected Solar Photovoltaic Systems 	18
2.6.2	• Off-Grid Solar Photovoltaic Systems.	20
2.6.3	Hybrid PV System	21
	Chapter 3	
	Parameter Estimation of Single and Multiple Diode Photovoltaic Model Using Whale Optimisation Algorithm	
3.1	General	22
3.2	Background	22
3.3	Models Of PV Module	26
3.3.1	Single Diode Model	26

3.3.2	 Double Diode Model 	27
3.3.3	• Three Diode Model	28
3.3.4	 Parameters Variation 	30
3.4	Problem Formulation	31
3.5	Whale Optimization Algorithm	33
3.5.1	 Encircling Prey Equation 	35
3.5.2	 Bubble-Net Attacking Method 	36
3.5.2.1	 Shrinking Encircling Mechanism 	36
3.5.2.2	 Spiral Updating Position 	36
3.5.2.3	 Search For Prey 	37
3.6	Simulation Results	38
	Chapter 4	
	Control Strategy For Low Voltage Ride	
	Through Capability Improvement Of Grid Connected Photovoltaic Power	
	Plants	
4.1	General	49
4.2	Introduction	50
4.3	PV Power Plant Model	54
4.4	Control Strategy Of Power Electronic Circuits	55
1 1 1		
4.4.1	• Dc-Dc Boost Converter	55
4.4.1	Dc-Dc Boost ConverterGrid Side Inverter	55 57

4.5	Problem Formulation and The Salp Swarm Algorithm (SSA)	59
4.5.1	 The Response Surface Methodology RSM 	59
4.5.2	Salp Swarm Algorithm	60
4.6	Design Procedure	64
4.7	Simulation Results And Discussion	68
4.7.1	 Testing The System Under Symmetrical Faults 	71
4.7.2	 Testing The System Under Unsymmetrical Faults 	74
	Chapter 5	
	Conclusion And Suggestions For Future Works	
5.1	Conclusions.	77
5.2	Future Work	79
	PUBLICATIONS	80
	REFERENCES	82

LIST OF FIGURES

Fig 1.1	PV Energy Generated and Resulting CO ₂ Avoided	2
Fig 1.2	(a) Evolution of Global Annual Solar PV Installed Capacity 2000-2017, (b)Top 3 Global Solar Market Share in 2016 & 2017 (GW)	3
Fig 2.1	Structure of PV	8
Fig 2.2	PV cell, module and array	8
Fig 2.3	An image comparing a polycrystalline silicon cell and a monocrystalline silicon cell	10
Fig 2.4	IV characteristics of PV cell	12
Fig 2.5	PV model showing the resistive effect	14
Fig 2.6	Resistive effect on IV characteristics	15
Fig 2.7	Maximum power on PV and IV curves	16
Fig 2.8	(a) Effect of varying the irradiance on IV characteristics of PV model, (b) Effect of varying the temperature on IV characteristics of PV model	17
Fig 2.9	A grid-connected PV System	19
Fig 2.10	An Off-Grid PV system	20
Fig 2.11	A hybrid PV systems	21
Fig. 3.1	(a) Equivalent circuit of single diode PV model of the PV module. (b) Equivalent circuit of double diode PV model of the PV module. (c) Equivalent circuit of three diode PV model of the PV module.	29

Fig 3.2	Unique hunting technique of humpback whales known Bubble-net feeding behaviour	34
Fig 3.3	Bubble-net search mechanism performed by the WOA. (a) Shrinking encircling mechanism. (b) Spiral updating position	34
Fig 3.4	The flow chart of the WOA	39
Fig 3.5	Objective function convergence (a) Single Diode model, (b) Double Diode model ,(c) Three Diode model.	41
Fig 3.6	(a) I-V plots,(b)P-V plots for simulation results and experimental data of the KC200GT PV module under different temperature conditions and fixed irradiance $G=1000$ W/m ² .	45
Fig 3.7	(a) I-V plots,(b) P-V plots for the experimental data and Simulation results of the KC200GT PV module under different irradiation conditions and fixed temperature T= 25°C.	46
Fig 3.8	A magnified portion of the simulation results and experimental data of the KC200GT PV module under STCs	47
Fig 3.9	Absolute current error of the three diode PV model.	48
Fig 4.1	Grid-connected PV power plant.	54
Fig 4.2	Electric charactrestic of 2.5 MW PV system	55
Fig 4.3	(a) DC converter control. (b) Grid-side inverter control	58
Fig 4.4	(a) The shape of a salp, (b) Chain of salps	60