Safety and Efficacy of off-label use of Ivabradine in Patients with Acute Heart Failure

Thesis

Submitted for Partial Fulfillment of Master Degree of Cardiology

Bγ **Mohamed Ahmed Radwan Mostafa** *M.B.*, *B.CH*.

Under Supervision of

Dr./ Khaled Mohamed Said Othman

Assistant Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr./ Ahmad Elsayed Yousef

Assistant Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. /Adham Ahmed Abdeltawab

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Cardiology Department - Faculty of Medicine Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr./ Khaled Mohamed**Said Othman, Assistant Professor of Cardiology - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr./ Ahmad Elsayed Yousef,** Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr.** /**Adham Ahmed Abdeltawab**, Lecturer of Cardiology,
Faculty of Medicine, Ain Shams University, for his great
help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohamed Ahmed Radwan Mostafa

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Introduction	1
Aim of the Work	2
Review of Literature	
Acute Heart Failure	3
Ivabradine: Heart Failure	28
Patients and Methods	48
Results	61
Discussion	76
Limitations	83
Conclusion	84
Summary	85
References	87
Master Table	108
Appendix	110
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Overview of congestion-induced org dysfunction and clinical manifestation	
Table (2):	Factors triggering acute heart failure	10
Table (3):	Definitions of the terms used in the section related to clinical presentation of patients with AHF:	ion
Table (4):	Major trails on ivabradine: The primary, and secondary outcomes	
Table (5):	The BORG scale	53
Table (6):	Comparison between group I and gro II as regards demographic data:	-
Table (7):	Distribution of the risk factors amo	•
Table (8):	Echocardiographic and laborate finding of the studied patients	•
Table (9):	Difference between 2 groups at base li as regard HR, 6MWT, NYHA cla MLHFQ	ss,
Table (10):	Difference between 2 groups in t follow up as regards HR, 6MWT, NYI class, MLHFQ	HA
Table (11):	Effect of the anti-failure treatme (including beta-blockers) on HR, NYI class, 6MWD.	HA
Table (12):	The effect of the anti-failure treatment (including ivabradine) on heart failure parameters	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Activation of the sympathetic nervou	
E' . (9)	system.	5
Figure (2):	Activation of the renin-angiotensi	
Figure (2).	system	
Figure (3):	heart failure based on the	
	presence/absence of congestion and/o	-
	hypoperfusion	
Figure (4):	Initial management of a patient with	
- 1 g 0-1 0 (1)	acute heart failure.	
Figure (5):	Management of patients with acu	
	heart failure based on clinical profi	
	during an early phase	19
Figure (6):	Therapeutic algorithm for a patien	\mathbf{nt}
	with symptomatic heart failure with	th
	reduced ejection fraction	
Figure (7):	Structure of ivabradine	
Figure (8):	Ivabradine selectively inhibits th	
	current in the sinus node	
Figure (9):	Main trails of ivabradine	
Figure (10):	The walking course.	
Figure (11):	Gender distribution among the stud	•
E' (10)	cases	
Figure (12):	Distribution of the risk factors amor	•
Figure (13):	the studied cases BORG class dyspnea more significant is	
rigure (15):	group1>group 2	
Figure (14).	BORG class dyspnea more significant	
rigure (14).	group1>group2	
Figure (15):	Effect of the anti-failure treatmen	
8 (10)•	(including beta-blockers) on NYH	
	class	71

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (16):	Effect of the anti-failure treatme	ent
	(including beta-blockers) on HR	71
Figure (17):	Effect of the anti-failure treatme	ent
	(including beta-blockers) on 6MWTD.	72
Figure (18):	Effect of the anti-failure treatme	ent
	(including ivabradine instead of be	ta-
	blockers) on NYHA class	74
Figure (19):	Effect of the anti-failure treatme	ent
	(including ivabradine instead of be	ta-
	blockers) on HR	74
Figure (20):	Effect of the anti-failure treatme	ent
	(including ivabradine instead of be	ta-
	blockers) on 6MWTD	75
Figure (21):	Effect of the anti-failure treatme	ent
	(including ivabradine instead of be	ta-
	blockers) on premature termination	of
	6MWTD due to dypsnea	75

List of Abbreviations

Abb.	Full term
6MWD	6 -minute walk distance
6MWT	6-minute walk test
ABP	Arterial blood pressure
ACEI	Angiotensin converting enzyme inhibitor
ACS	Acute coronary syndrome
AF	Atrial fibrillation
AHF	Acute heart failure
ANP	Atrial Natriuretic Peptide
ARB	Angiotensin Receptor Blocker
BMI	Body Mass Index
BNP	Brain Natriuretic Peptide
bpm	Beat per minute
CCU	Cardiac care unit
CHD	Coronary heart disease
CHF	Congestive heart failure
COPD	Chronic obstructive pulmonary disease
DHF	Decompensated heart failure
DM	Diabetes mellitus
ECG	Electrocardiography
EF	Ejection fraction
eGFR	Estimated Glomerular Filtration Rate
ESC	European Society of Cardiology
HF	Heart failure

List of Abbreviations (Cont...)

Abb.	Full term
HF-REF	. Heart failure with reduced ejection fraction
HR	. Heart rate
HRQOL	. Health-Related Quality of Life
IABP	. Intra Aortic Balloon Counterpulsation
ICU	. Intensive care unit
INR	. International Normalized Ratio
LVEDD	. LV end systolic diameter (LVESD)
LVEF	. Left ventricular ejection fraction
LVESD	. Left ventricular end systolic diameter
MLHFQ	. Minnesota Living with Heart Failure Questionnaire
MRA	. Mineralocorticoid receptors antagonist
NYHA	New York Heart Association
QOL	. Quality of life
RCT	. Randomized controlled trial
SAN	. SIANO atrial node
SBP	. Systolic blood pressure
SHIFT	. The Systolic Heart failure treatment with the I_f Inhibitor Ivabradine Trial

Introduction

Sympathetic hyperactivity and consequent increase in heart rate (HR) are physiological responses to low cardiac output in patients with acute heart failure. However, elevated HR may become inappropriate in these patients, increasing myocardial oxygen demand and decreasing diastolic filling time and might lead to hemodynamic deterioration, ventricular dysfunction (tachycardiomyopathy) and clinical deterioration (*Clinical Trial*, 2016).

Ivabradine has shown to increase survival of patients with chronic stable systolic HF. Compared to beta blockers, Ivabradine has the advantage of "pure" negative chronotropic effect, no effect on myocardial contractility and have been validated as a therapeutic option in patients with stable HF, there are no studies available on this strategy in patients with DHF *(Clinical Trial, 2016)*.

Patients with heart failure (HF) have limited exercise tolerance, few pharmacological interventions have been proven effective in improving exercise capacity. At the presence there is conflicting evidence on the effectiveness of beta-blockers on exercise capacity. **Ivabradine** has been shown to improve prognosis in patients with ischemic heart disease, left ventricular dysfunction and heart rate ≥ 70 bpm. The association of **Ivabradine** and atenolol has been proven effective in increasing exercise tolerance in patients with ischemic heart disease (**Swedberg and Komajda**, 2010).

AIM OF THE WORK

Our study aims to assess the effect and safety of Ivabradine as strategy of heart rate control, improve exercise tolerance and improve quality of life in patients with Acute heart failure.

Chapter 1

ACUTE HEART FAILURE

Definition

HF refers to rapid onset or worsening of symptoms and/or signs of HF. It is a life-threatening medical condition requiring urgent evaluation and treatment, typically leading to urgent hospital admission. AHF may present as a first occurrence (de novo) or, more frequently, as a consequence of acute decompensation of chronic HF, and may be caused by primary cardiac dysfunction or precipitated by extrinsic factors, often in patients with chronic HF (*Ponikowski et al.*, 2016).

Acute myocardial dysfunction (ischaemic, inflammatory or toxic), acute valve insufficiency or pericardial tamponade are among the most frequent acute primary cardiac causes of AHF. Decompensation of chronic HF can occur without known precipitant factors, but more often with one or more factors, such as infection, uncontrolled hypertension, rhythm disturbances or non-adherence with drugs/diet (Mentz and O'connor, 2016).

Pathophysiology of acute heart failure

The clinical presentation of AHF typically includes symptoms or signs related to congestion and volume overload rather than to hypoperfusion (*Costanzo and Jessup, 2012*).

Since congestion plays a central role for the vast majority of AHF cases, understanding of the underlying pathophysiological mechanisms related to congestion is essential for treating AHF patients (*Gheorghiade et al.*, 2010).

More importantly, the level of congestion and the number of congested organs have prognostic relevance in HF patients (*Gheorghiade et al.*, 2010).

Mechanisms of congestion: fluid accumulation and fluid redistribution

In presence of cardiac dysfunction, several neurohumoral pathways, including the sympathetic nervous system, the renin-angiotensin-aldosterone system and the arginine vasopressin system, are activated to counter the negative effects of HF on oxygen delivery to the peripheral tissues.

Neuro-hormonal activation in HF leads to impaired regulation of sodium excretion through the kidneys which results in sodium and, secondary, fluid accumulation (Nijst et al., 2015, McKie et al., 2011) (Figure 1&2).

Significantly increased cardiac filling pressures and venous congestion are frequently observed days or weeks before the overt clinical decompensation (Chaudhry et al., 2007, Zile et al., 2008, Lam et al., 2009).

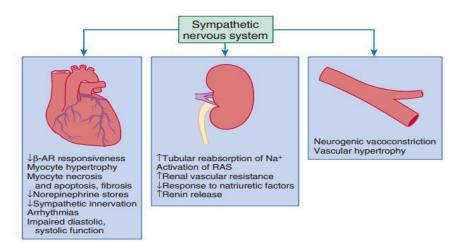


Figure (1): Activation of the sympathetic nervous system (McKie et al., 2011).

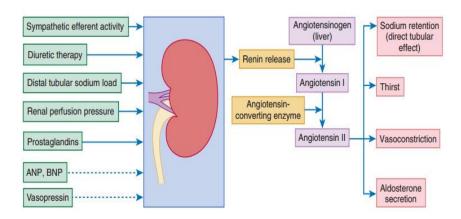


Figure (2): Activation of the renin-angiotensin system (McKie et al., 2011).

Tissue oedema occurs when the transudation from capillaries into the interstitium exceeds the maximal drainage of the lymphatic system. Transudation of plasma fluid into the interstitium results from the relation between hydrostatic and oncotic pressures in the capillaries and in the interstitium as

well as interstitial compliance. Increased transcapillary hydrostatic pressure gradient, decreased transcapillary oncotic pressure gradient and increased interstitial compliance promote oedema formation (*Lam et al.*, 2009).

In healthy individuals, increased total body sodium is usually not accompanied by oedema formation since a large quantity of sodium may be buffered by interstitial glycosaminoglycan networks without compensatory water retention (*Titze et al.*, 2004).

Moreover, the interstitial glycosaminoglycan networks display low compliance which prevents fluid accumulation in the interstitium (*Guyton*, 1965).

In HF, when sodium accumulation persists, the glycosaminoglycan networks may become dysfunctional resulting in reduced buffering capacity and increased compliance. In AHF the presence of pulmonary or peripheral oedema correlates poorly with left- and right-sided filling pressures (*Breidthardt et al., 2012, Zile et al., 2011*), but in patients with dysfunctional glycosaminoglycan networks even mildly elevated venous pressures might lead to pulmonary and peripheral oedemas (*Nijst et al., 2015*).

In addition, since a large amount of sodium is stored in the interstitial glycosaminoglycan networks and does not reach