ENVIRONMENTAL IMPACT OF VOLATILE ORGANIC COMPOUNDS EMITTED FROM ASPHALT PAVEMENT

Submitted By

Rokya Ibrahim Khalifa Ibrahim

B.Sc. of Science (Chemistry), Faculty of Science, Sohag University, 2007

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

ENVIRONMENTAL IMPACT OF VOLATILE ORGANIC COMPOUNDS EMITTED FROM ASPHALT PAVEMENT

Submitted By

Rokya Ibrahim Khalifa Ibrahim

B.Sc. of Science (Chemistry), Faculty of Science, Sohag University, 2007

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Sciences

Has been Approved by:
Name
Signature

1- Prof. Dr. Taha Abd El Azzem Mohamed Abd El-Razek

Prof. of Environmental Chemistry Vice Dean of Institute of Environmental Studies & Research for Environment & Community Affairs Ain Shams University

2- Dr. Reham Lotfy Abdel Aziz

Expert of Public Health Manager of Environmental Health Egyptian Environmental Affairs Agency

3- Prof. Dr. Mahmoud Ahmed Ibrahim Hewaihy

Prof. of Public Health, Department of Environmental Basic Sciences Institute of Environmental Studies & Research Ain Shams University

ENVIRONMENTAL IMPACT OF VOLATILE ORGANIC COMPOUNDS EMITTED FROM ASPHALT PAVEMENT

Submitted By

Rokya Ibrahim Khalifa Ibrahim

B.Sc. of Science (Chemistry), Faculty of Science, Sohag University, 2007

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof. Dr. Mahmoud Ahmed Ibrahim Hewaihy

Prof. of Public Health, Department of Environmental Basic Sciences Institute of Environmental Studies & Research Ain Shams University

2- Dr. Ayman Helmy Kamel

Associate Prof. of Analytical Chemistry Faculty of Science Ain Shams University

Acknowledgment

First and above all, I praise God, the almighty for providing me this opportunity and granting me the capability to proceed successfully

This thesis appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them.

My deepest appreciation to **Prof. Dr. Mahmoud Ahmed Ibrahim Hewehy** Institute of Environmental Studies & Research Ain Shams University who provided me constructive criticism which helped me develop a broader perspective to my thesis. generously gave his time to offer me valuable comments toward improving my work, reading my reports, and for practical advice. I am also thankful to Him for commenting on my views, understand and enrich my ideas.

There are no proper words to convey my deep gratitude and respect for **Dr: Ayman Helmy Kamel** Faculty of Science Ain Shams University, for his encouragement, I am also thankful to his for reading my reports, commenting on my views and helping me understand and enrich my ideas. it is a great honor to work under his guidance and supervision.

My deepest appreciation to My family and my friends.

Abstract

Hot mix(asphalt (HMA) is a major construction material used for paving roads, airport runways, and parking lots. During HMA preparation, a massive amount of volatile organic compounds (VOCs) is emitted from the hot asphalt mixtures, creating a potential health risk to on-site workers. This thesis presents the results of a study in which air samples were collected at multiple locations and time points of several projects during HMA pavement application and were subsequently characterized for their concentrations by using gas analyzer. After testing the VOCs samples the concentration increase from 130ppb to 1843ppb. that the majority increasing of VOCs was after asphalt pavements Although the individual concentrations of the identified chemicals were found to be below various exposure limits, their collective effect on human health remains unknown and may not be ignored.

KEYWORDS:

Asphalt; Volatile organic compounds (VOCs).

List of Contents

Title Pa	ge No.
List of Tables	Ш
List of Figures	${f V}$
List of Abbreviations	VII
Introduction	1-2
Aim of study	3
Review of literature	4-45
2.1.1. Volatile organic compounds (VOCs)	4
2.1.2 Volatile organic compounds (VOCs) according to hydrocarbons	4
2.1.3 Volatile organic compounds (VOCs) in urban regions	5
2.1.4. Identifying Sources of Volatile organic compounds	7
2.1.5. Volatile organic compounds (VOCs) as a main contributor in air pollution	10
2.1.6. VOCs as a source of Indoor and outdoor air pollution	11
2.1.7. Activities increase VOCs levels	12
2.1.8. Chemical fingerprinting	13
2.1.9. Assessment of exposure to VOC Mixtures	14
2.1.10.1. Determinants of VOC Exposures	15
2.1.10.2 Volatile Organic Compound Optical Fiber Sensors	16
2.1.10.3. VOCs, environmental tobacco smoke (ETS) tracers, and perfluorocarbon tracers (PFTs)	23
2.1.10.4. Significance of VOC Exposures	24
2.1.10.5. VOC Monitoring and Exposure Assessment	26
2.1.10.6. HIGH EXPOSURES	26
2.1.11. Exposure to volatile organic compounds in healthcare settings	27

Title Pa	ige No.
2.1.12. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK)	28
2.2.1.1. Identifying asphalt applications as a point source emitter of volatile organic compounds	30
2.2.1.2. Characteristics of volatile organic compounds emission profiles from hot road bitumens	32
2.2.2.1 Asphalt as a Source of Ozone Pollution	33
2.2.2.2. The Fate of Pollutants in Porous Asphalt Pavements, Laboratory Experiments to Investigate Their Potential to Impact Environmental Health	34
2.2.3.1. Health Effects of Asphalt	36
2.2.3.2. Respirable Crystalline Silica Exposures During Asphalt Pavement	37
2.3. Gaseous Air Pollutant and it's specific Health aspects	39
2.3.1.1 Sulphur dioxide	39
2.3.1.2 Health Effects from Sulfur Dioxide	40
2.3.2.1 Nitrogen dioxide	41
2.3.2.2. Health Effects from Nitrogen Oxides	42
2.3.3.1. Carbon monoxide	43
2.3.3.2. Health Effects from Carbon Monoxide	44
Material and Method	46-52
Results	53-70
Discussion	71-74
Conclusion	75
Recommendations	76
Summary	77-79
References	80-106

List of Tables

Ta	ble No. Title Page N	lo.
1	Concentration of Air Pollutant in Maryoutia before and immediately after asphalt	53
2	Concentration of Air Pollutant in El Zomour before and immediately after asphalt	54
3	Concentration of Air Pollutant in El Orouba before and immediately after asphalt	55
4	Concentration of Air Pollutant in El Orouba before and immediately after asphalt 5	56
5	Collection table for Concentration of VOC in the four areas of study before and after asphalt	57
6	Collection table for Concentration of NO2 in the four areas of study before and after asphalt5	58
7	Collection table for Concentration of H2S in the four areas of study before and after asphalt5	59
8	Collection table for Concentration of SO2 in the four areas of study before and after asphalt	50
9	Collection table for Concentration of CO in the four areas of study before and after asphalt	61
10	VOC in maryoutia street	52
11	VOC in El Zomour street	2
12	VOC in El Orouba street	2
13	VOC in Feisal street 6	52

Ta	ble No. Title Page	No
14	Difference in Concentration of VOC in Feisal in winter season and El Zomor in summer season before and after asphalt representing temperature effect	
15	CO in Feisal street before and after asphalt paving	66
16	H2S in Feisal street before and after asphalt paving	67
17	NO2 in Feisal street before and after asphalt paving	68
18	SO2 in Feisal street before and after asphalt paving	69

List of Figures

Fig	No. Title Page	No.
1	Principal fields where VOC sensors have many applications, and species usually measured. Decreasing polycyclic aromatic hydrocarbons emission from bitumen using alternative bitumen production process	20
2	Map showing sampling sites in Faisal Street Giza Area	46
3	Map showing sampling sites in El Maryoutia Street Giza Area	47
4	Map showing sampling sites in El Zomour Street Giza Area	48
5	Map showing sampling sites in El Orouba Street Giza Area	48
6	Aeroqual's tportabletair Picture	49
7	Showing Different Gas Sensors	50
8	comparison between VOC Maryoutia Street before and after asphalt paving	63
9	comparison between VOC Zomour street before and after asphalt paving	64
10	comparison between VOC in El Orouba street before and after asphalt paving	64
11	comparison between VOC in Feisal before and after asphalt paving	65
12	Concentration of VOC in Feisal in winter season and El Zomor in summer season after asphalt representing temperature effect	65
13	Concentration of VOC in maryotia in spring during 30 min after asphalt representing increasing concentration with time	66

Fig	No.		7	Title		Page	No.
14	comparison paving					•	67
15	comparison paving					-	68
16	comparison paving					•	69
17	comparison paving					-	70

List of Abbreviations

Definition	Acronym
1,4-dichlorobenzene	1,4-DCB
Anderson-Darling	A-D
Air exchange rate	AER
Akaike information criterion	AIC
Bayesian information criterion	BIC
Benzene, toluene, ethylbenzene, xylenes	BTEX
Cumulative distribution function	CDF
Carbon tetrachloride	CTC
Dirichlet process mixture	DPM
Expectation maximization	EM
Environmental Protection Agency	EPA
Environmental tobacco smoke	ETS
Generalized extreme value	GEV
Inter-quartile range	IQR
Kolmogorov-Smirnov	K-S
Kruskal-Wallis	K-W
Linear mixed-effects model	LMM
Mean absolute error	MAE
Methylene chloride	MC
Method detection limit	MDL
Mobile examination center	MEC
Multiple imputation	MI
Maximum likelihood estimate	MLE
Mean squared error	MSE
Methyl tert-butyl ether	MTBE
National Health and Nutrition Examination Survey	NHANES

Definition	Acronym
National Human Activity Pattern Survey	NHAPS
Office of Environmental Health Hazard Assessment	ОЕННА
Polycyclic aromatic hydrocarbon	PAH
polybrominated diphenyl ether	PBDE
Tetrachloroethylene (or perchloroethylene)	PERC
Particulate matter ≤ 2.5 µm in aerodynamic diameter	PM2.5
Positive matrix factorization	PMF
Reduction in residual variance	R2
Reference concentration	RfC
Relationships of Indoor, Outdoor, and Personal Air	RIOPA
Schwarz Bayesian Information Criterion	SBC
Trichloroethylene	TCE
total volatile organic compound	TVOC
Unit risk factor	URF
Volatile organic compound	VOC
National Institute for Occupational Safety and Health	NIOSH

Introduction

Introduction

Hot mix (asphalt is a major construction material used for paving roads, airport runways, and parking lots. During HMA preparation, a massive amount of volatile organic compounds (VOCs) is emitted from the hot asphalt mixtures, creating a potential health risk to on-site workers The purpose of this research was to determine the origins of the majority of ambient VOCs detected in Giza government in March, August, October and December of 2017 in Maryoutia Street, El Zomor street, Orouba street and Feisal street respectively. a preliminary study was conducted to determine whether they were being emitted from an industrial point source, or if personal vehicles were the source of most of the ambient VOCs. Initial findings showed that the greatest amount of constant VOCs came from neither of these alleged sources. Samples taken from sites before and immediately after pavement.

After testing the VOCs from the four areas samples it was determined that the majority of increase of VOCs was after asphalt pavements, ruling out personal vehicles from school traffic as the major source.

Furthermore, (this research shows that newly applied asphalt may continue to release VOCs after the initial pour; making asphalt a very important factor to consider when testing for ozone precursor of Ozone formation is generally a photochemical reaction. In the stratosphere ultraviolet radiation in sunlight adds energy to a stable two-atom oxygen molecule, causing the bonds to break. This results in two unbound oxygen atoms with a free electron each. If one of these free oxygen atoms encounters a standard oxygen molecule, it may bind to produce a molecule with three oxygen atoms. This molecule is ozone The majority of ozone production in the troposphere however, occurs when sunlight