

EVALUATION OF SERUM PHENYL LACTATE AS A DIAGNOSTIC TEST OF NON ALCOHOLIC FATTY LIVER DISEASE IN EGYPTIAN PATIENTS

Thesis

Submitted for Partial Fulfillment of Master Degree In Internal Medicine

By

Ahmed Elsayed Mohamed Badawy (M.B.,B.Ch.)

Supervised by

Prof. Dr. Tarek Mohamed Youssef

Professor of Gastroenterology & Internal Medicine Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed El Ghandour

Lecturer of Gastroenterology& Internal Medicine Faculty of Medicine - Ain shams University

Dr. Mohamed Magdy Salama

Lecturer of Gastroenterology& Internal Medicine Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgement

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr Tarek Mohamed Youssef,.** Professor of Gastroenterology & Internal Medicine Faculty of Medicine - Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

I am also delighted to express my deepest gratitude and thanks to **Dr.** Ahmed Mohamed El Ghandour, Lecturer of Gastroenterology & Internal Medicine Faculty of Medicine - Ain Shams University for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohamed Magdy Salama Lecturer** of Gastroenterology& Internal Medicine
Faculty of Medicine - Ain Shams University for his great
help, outstanding support, active participation and
guidance.

Ahmed Elsayed Mohamed

Dedication

Special thanks to my Mother and Father for their supports and love. Without their help I wouldn't be here. And also, my lovely wife and sister

List of Contents

	Title		Page	
•	List of Abbreviation	s	I	
•	List of Tables		IV	<i>r</i>
•	List of Figures		VI	Ί
•	Introduction		1	
•	Aim of the Work		5	
•	Review of Literature	•		
	- Chapter (1): No	onalcoholic	Fatty Liver	
	Disease and Nona	lcoholic Stea	tohepatitis6	
	- Chapter (2): Phen	yl Lactic Aci	d 57	7
•	Patients and Method	is	70)
•	Results		79)
•	Discussion		10)5
•	Summary		11	17
•	Conclusion and Rec	ommendati	ons12	20
•	References		12	21
	Arabic Summary			_

List of Abbreviations

AASLD	American association for the study of	
	liver diseases	
ACEI	.Angiotensin converting enzyme	
	inhibitor	
ALD	.Alcoholic liver disease	
ALT	.Alanine amino transferase	
ANA	.Antinuclear antibody	
ARB	angiotensin receptor blockers	
ASMA	.Anti smooth muscle antibody	
AST	.Aspartate amino transferase	
BASH	.Both alcoholic and nonalcoholic	
	steatohepatitis	
BMI	.Body mass index	
CAP	.controlled attenuation parameter	
CASH	.chemotherapy-associated	
	steatohepatitis	
СНВ	.Chronic hepatitis B virus	
СНС	.Chronic hepatitis C virus	
CHOL	.Cholesterol	
CKD	.Chronic kidney disease	
CT	.computed tomography	
CVD	.Cardiovascular disease	
DASH	.Drug -associated steatohepatitis	
EASD	.European association for study of	
	diabetes	

EASL	European association for study of
	liver
EASO	European association for study of
	obesity
ECM	Extra Cullar Matrix
e-GFR	Estimated – glomerular filtration rate
ELF	European Liver Fibrosis
FBG	Fasting blood glucose
FDA	Food and drug administration
FFA	Free fatty acids
FLI	fatty liver index
GGT	Gamma glutamyl transferase
GWAS	Genome-wide association studies
на	Hyaluronic acid
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HDL	Low high-density lipoprotein
Hh	Hedgehog
HIF	Hypoxia inducible factors
HSCs	Hepatic stellate cells
IFG	Impaired fasting glucose
IH	Intermittent hypoxia
IL	Interleukin
IR	Insulin resistance
LDL	Low-density lipoprotein
LSM	Liver stiffness measurement
MetS	Metabolic syndrome
MRI	Magnetic resonance imaging

mRNA Messenger ribonucleic acid

NAFLD Nonalcoholic fatty liver disease

NAS NAFLD Activity Score

NASH Nonalcoholic steatohepatitis

NFS NAFLD fibrosis score
NPV Negative predictive value
OSA Obstructive sleep apnea
P3NP Peptide of pro-collagen III

PASH PNPLA3-associated steatohepatitis

PHLA PHENYL LACTIC ACID
PPV Positive predictive value

RAAS Renin-Angiotensin-Aldosterone

System

RCTs Randomized controlled trials **SOS** Swedish obese subjects

Simple steatosis

TE Transient elastography

TG Triglycerides

TIMP Tissue inhibitor of metalloproteinase

TNF Tumor necrosis factor

TNF-α Tumour necrosis factor-alpha

TZD Thiazolidinediones
UDCA Ursodeoxycholic acid
US Ultrasonography

VEGF Vascular endothelial growth factor **WGO** World Gastroenterology Organisation

WHO World Health Organization

List of Tables

Table No.	Title	Page
Table (1):	Nonalcoholic fatty liver disease related definitions	
Table (2):	Regional obesity/overweight da	ta 12
Table (3):	Estimated prevalence's of NAFL and NASH	
Table (4):	Clinical identification of the metabolic syndrome	17
Table (5):	Risk factors and associated conditions for NAFLD	17
Table (6):	Protocol for a comprehensive evaluation of suspected NAFLD patients	
Table (7):	NASH Clinical Research Network histological scoring system	
Table (8):	Elements of a comprehensive lifestyle approach to NAFLD treatment	43
Table (9):	Summary for treatement option NAFLD, NASH	
Table (10):	Summary of upcoming drugs	55
Table (11):	HPLC elution profile program	75
Table (12):	Comparison of age and gender three groups	
Table (13):	Comparison of weight & height BMI & waist in three groups	

List of Tables

Table No.	Title Page	
Table (14):	Comparison of S.GGT&S.CR&BUN in three groups	
Table (15):	Comparison of S.TG &cholesterol in three groups	
Table (16):	Comparison of CBC in three groups 88	
Table (17):	Comparison between INR in three groups	
Table (18):	Comparison between FBS in three groups	
Table (19):	Comparison between ALT & AST & Bilirubin & S. Albumin in three groups	
Table (20):	Comparison between NAFLD score & FLI & APRI in three groups	
Table (21):	Comparison between liver size in three groups	
Table (22):	As regards phenyl lactic acid there were statistically significant difference between Group I & II p-value <0.001, group I & III p-value <0.001 and group II & III <0.00197	
Table (23):	98	
Table (24):	Show ROC curve between cases and control	

List of Tables

Table No.	Title	Page
Table (25):	Show ROC curve between and group II	0 1
Table (26):	Show ROC curve between and group III	0 1
Table (27):	Show ROC curve between and Group III	-

Figure No.	Title	Page
Fig. (1):	Estimated prevalence of obe > 25) in males aged 15+ (20	5 (
Fig. (2):	Estimated prevalence of obe > 25) in females aged 15+ (2	• (
Fig. (3):	The "multi-hit" hypothesis for nonalcoholic steatohepatitis oxLDL, oxidized low-density lipoprotein; TLR, Toll-like re	(NASH).
Fig. (4):	Diagnostic flow-chart to ass monitor disease severity in t presence of suspected NAFL metabolic risk factors	he D and
Fig. (5):	Normal liver	39
Fig. (6):	Fatty liver (steatosis) (balloo	ning) 39
Fig. (7):	Nash	39
Fig. (8):	Nash fibrosis	40
Fig. (9):	Cirrhosis (nodularity & scar	ring) 40
Fig. (10):	Pathways and enzymes invo Phenyllactic acid production	
Fig. (11):	3-(4-hydroxyphenyl) lactate from human gut microbiome	
Fig. (12):	Gut-microbiome derived me and development of NAFLD	

Figure No.	Title	Page
Fig. (13):	An altered gut microbiom derived metabolites can f development of hepatic so patients at risk of nonalcoliver disease (NAFLD)	acilitate the teatosis in oholic fatty
Fig. (14):	Show Calibration curve is determine area under the both stander and sample used versus the concentration of phenyl lactic acconcentration of phenyl lawithin samples	e peak for which area ration of id to get actic acid
Fig. (15):	show weight there was st significant difference betw of controlled and two gro NAFLD NASH p-value <0 there was no statistically difference between group value0.997	ween group up of .0001 and significant II&III p-
Fig. (16):	Show MBI there was state significant difference between group value 0.693	ween group up of .0001 there icant II&III p-

Figure No.	Title	Page
Fig. (17):	show there was statistical significant difference between group value < 0.986	ween group up of .0001 and significant II&III p-
Fig. (18):	Show that there was state significant difference between of controlled and two groen NAFLD NASH p-value <0	ween group up of
Fig. (19):	Show as regards S. TRG statistically significant dibetween group of control group of NAFLD NASH p-value<0.0001	ifference led and two -
Fig. (20):	Show S. cholesterol there statistically significant di between the three groups 0.001	ifference s p-value
Fig. (21):	Show as regards PLT the statistically significant dibetween group of control group of NAFLD P-value Group of NAFLD & NASH 0.001	ifference led and).038 and I p-value

Figure No.	Title	Page
Fig. (22):	Show as regards AST there were	
3 ()	statistically significant differe	
	between two group of NAFLD	
	p-value <0.001 there was no	
	statistically significant differe	nce
	between group I & II p-value	
Fig. (23):	As regards ALT there were	
_ , ,	statistically significant differe	nce
	between two group of NAFLD	% NASH
	p-value <0.001 there was no	
	statistically significant differe	nce
	between group I & II p-value	0.84392
Fig. (24):	Show as regards NAFLD score	e there
	were statistically significant	
	difference between C & NAFL	D
	groups p-value <0.001, C & N	IASH
	groups p-value 0.031 and NA	FLD &
	NASH p-value < 0.001	94
Fig. (25):	Show as regards FLI there wa	.s
	statistically significant differe	nce
	between group of controlled a	nd two
	group of NAFLD NASH p-valu	e
	< 0.001 there was no statistic	ally
	significant difference between	group
	II & III p-value 0918	95
Fig. (26):	Show as regards APRI there v	vas
	statistically significant differe	nce
	between controlled group and	-
	2 & 3 p-value<0.001	95

Figure No.	Title	Page	
Fig. (27):	Show as regards liver size there were		
3 ()	statistically significant diff		
	between C&NAFLD group		
	0.001, C & NASH group p-value		
	<0.001 and NAFLD & NAS	0.001 and NAFLD & NASH p-value	
	0.041	96	
Fig. (28):	Show as regards phenyl la	ctic acid	
	there were statistically sign	nificant	
	difference between Group	I & II p-	
	value <0.001, GroupI & III	p-value	
	<0.001 and group II & III $<$	0.001 97	
Fig. (29):	Show as regards Phenyl lactic acid		
	there was statistically sign	ificant	
	differences in APRI AST/PI	LT p-value	
	0.008	99	
Fig. (30):	As regards Phenyl lactic ac		
	was statistically significan		
	differences in AST p-value		
Fig. (31):	Show as regards Phenyl la		
	there was statistically sign		
	differences in ALT p-value		
Fig. (32):	Show at cut-off value for p	· ·	
	lactic acid (>24.630µg/ml)		
	sensitivity 83.3 % and spe	=	
Fir (22).	100%		
Fig. (33):	Show cut-off value for phe	· ·	
	acid between group 1 & 2	•	
	μg/ml) it has a sensitivity		
	and specificity 100	102	