Epidemiology of Stroke in Sohag; Hospital Based Study

Thesis

Submitted for the partial fulfillment of master degree in Neuropsychiatry

By

Mohammad Ibrahem Ahmed Abd AlRahem *M.B.B.Ch*

Under supervision of

Prof. Dr. Hany Mohammad Amen Aref

Professor of Neuropsychiatry Faculty of medicine-Ain Shams University

Prof. Dr. Salma Hamed Mahmud

Professor of Neuropsychiatry Faculty of medicine-Ain Shams University

Prof. Dr. Ali Soliman Ali Shalash

Professor of Neuropsychiatry
Faculty of medicine-Ain Shams University

Faculty of Medicine Ain Shams University 2019

بني لِلْهُ الْجَمْزِ الْحِيْمِ

سورة طـــه الآيـة رقم ١١٤

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Hany Mohammad Amen Aref** Professor of Neuropsychiatry, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Salma Hamed Mahmud**Professor of Neuropsychiatr, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Ali Soliman Ali Shalash**, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

I can hardly find the words to express my gratitude to **Dr. Hossam Shokry** lecturer of neurology, Faculty of Medicine, Ain Shams University

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

List of Abbreviations	i
List of Tables	ii
List of Figures	V
Introduction	1
Aim of the Work	7
Review of Literature	7
Chapter 1	
* Burden of Stroke Globally	7
Chapter Two	
* Classification of stroke	16
Chapter three	
* Risk factors	28
Chapter four	
* Burden of stroke in Egypt	49
Chapter Five	
* Predictors of mortality and outcome	63
Material and Methods	71
Results	74
Discussion	110
Summary and Conclusion	123
Recommendations	126
References	127
Arabic Summary	

List of Abbreviations

AMI : Acute myocardial infarction

BIMC : Beth Israel Deaconess Medical Center in

Boston

BMI : Body mass index

CAA : Cerebral amyloid angeopathy

CBF : Cerebral blood flow

DALY : Disability-adjusted life year

FHS : Fremighame cohort study

NINDS : National institute of neurological disorders

and stroke

OSCP : The Oxford shire Community Stroke

Project

PACI : Partial anterior circulation infarct

PAR : Population attributable risk

PFO : Patent foramen oval

POCI : Posterior circulation infarcts

RMH : Ramos Mejia Hospital

RR : Relative risk

SCD : Sickle cell disease

TACI : Total anterior circulation infarct

TOAST : The Trial of ORG 10172 in Acute Stroke

Treatment

List of tables

Table	Title	Page
1	Definitions of cerebrovascular attacks	2
2	Stroke statistics from some developed	8
	countries; France, Germany, Italy and UK	
3	Stroke subtypes in some Arab countries	12
4	Classifications of ischemic stroke subtype	17
5	Common sources of cardioembolic strokes	18
6	Oxford shire Community Stroke Project (OCSP) Classification	21
7	Some studies that were done in Egypt	50
8	the results of the studies that were done in Upper Egypt	50
9	Five epidemiological studies in Egypt	52
10	Prevalence of CVS with age- and sex- specific groups in Assiut Governorate, Egypt	53
11	Incidence and prevalence/1000 populations of CVS and TIA in different localities according to sex.	54
12	Case fatality rate of CVS and its subgroups in relation to time of admission to hospital from the onset of stroke	55
13	Prevalence of cerebrovascular stroke and TIA/1000 population in various age groups	56
14	Mortality of stroke	63
15	Demographic data	74
16	Types of stroke	75

17	Damagraphia data of isahamia stralis	76
	Demographic data of ischemic stroke	
18	Risk factors of ischemic stroke	77
19	Drugs given at admission to ischemic stroke patients	79
20	Distribution `of ischemic stroke patients according to TOAST classification	80
21	Distribution of ischemic stroke patients according to TOAST classification	82
22	mortality of ischemic stroke in relation to The Oxford shire Community Stroke Project	83
23	distribution of ischemic stroke patients according to mRS at discharge	83
24	mRS at discharge in relation to age group	85
25	Distribution of ischemic stroke patients by mRS after 3 months.	86
26	MRS after 3 months for cases discharged home	87
27	Clinical and laboratory data of ischemic stroke patients	88
28	Correlation between mRS after 3 months and other risk factor among ischemic stroke patients.	90
29	mRS after 3 months in relation to the gender, smoking and past history of ischemic stroke patients	92
30	mRS after 3 months in relation to drugs used by ischemic stroke patients	94
31	mRS after 3 months in relation to TOAST classification of ischemic stroke patients who discharged to home	95
32	relation between TOAST classification and imaging of ischemic stroke patients	97

List of tables (Cont.)

Table	Title	Page
33	Relation between mRS after 3 months	98
	and clinical and laboratory data of	
	ischemic stroke patients	
34	Demographic data of hemorrhagic stroke	100
35	Medical history before the onset of	101
	hemorrhagic stroke	
36	Drugs given at admission to	102
	hemorrhagic stroke patients	
37	Distribution of hemorrhagic stroke	103
	patients according to mRS at discharge	
38	Distribution of hemorrhagic stroke	104
	patients by mRS after 3 months for cases	
	discharged to home	
39	MRS after 3 months for case discharged	105
	to the home	
40	Clinical and laboratory data of	106
	hemorrhagic stroke patients	
41	Correlation between mRS after 3 months	108
	and other risk factor among ischemic	
	stroke patients	
42	Mortality of cerebrovascular stroke	109

List of Figures

Fig.	Title	Page
1	Incidence of stroke in young people in some developed and developing countries	9
2	Ischemic stroke incidence rates, trends over time by sex	31
3	Approximate risk of stroke by age and sex	32
4	Percent of AF in males and females	33
5	Site of the studies in Egypt	49
6	Medical causes of death in Egypt	51
7	Mortality rate in relation to NIHSS	65
8	Distribution of the studied patients by type of stroke	75
9	Medical history before the onset of ischemic stroke	78
10	Drugs given at admission to ischemic stroke patients	79
11	Distribution of ischemic stroke patients according to TOAST classification	81
12	Distribution of ischemic stroke patients according to mRS at discharge	84
13	Distribution of ischemic stroke patients by mRS after 3 months	86
14	MRS after 3 months in relation to TOAST classification of ischemic stroke patients	95
15	Distribution of hemorrhagic stroke patients according to mRS at discharge	103

Introduction

From the historical point the word "stroke" was firstly introduced into medicine in 1689 by William Cole in A Physico-Medical Essay Concerning the Late Frequencies of Apoplexies. Before Cole, the common term used to describe very acute non-traumatic brain injuries was "apoplexy. Apoplexy was used by Hippocrates circa 400 before Christ. For more than 2000 years, physicians have struggled to define stroke (*Aho et al.*, 1980).

Stroke is a major cerebrovascular disease threatening human health and life with high morbidity, disability and mortality. According to the data from Global Burden of Disease Studies, worldwide in 2010 there were an estimated 11,569,538 incident ischemic strokes and 5,324,997 events of incident hemorrhagic stroke; furthermore, 2,835,419 individuals died from ischemic stroke and 3,038,763 from hemorrhagic stroke. Stroke is the number cause of the death in several countries such as China (*Tiotrefis et al., 2012*).

According to the Global Burden of Disease 2010 study, there were 16.9 million people suffering from a stroke each year. In that year, the estimated global incidence of stroke was (258/100.000/year), with marked differences between high income (217/100.000/year) and low income (281/100,000/year) countries. Similar differences have since clearly been shown in contemporary population based registries ('Jot et al., 2015).

Definition was introduced at 1975 and depended on the duration; this was due to no improvement in imaging. Now in the twenty one century the definition was changed and introduced imaging as a second corner stone in the definition. TIA is a brief episode of neurologic dysfunction caused by focal brain or retinal ischemia, with clinical symptoms typically lasting less than one hour, and without evidence of acute infarction (Sacco et al., 2013). Table (1)

Table (1): Definitions of cerebrovascular attacks

<u>CNS</u> infarction: CNS infarction is brain, spinal cord, or retinal cell death attributable to ischemia, based on

1/ .pathological, imaging, or other objective evidence of cerebral, spinal cord, or retinal focal ischemic injury in a defined vascular distribution; or

2/.clinical evidence of cerebral, spinal cord, or retinal focal ischemic injury based on symptoms persisting ≥24 hours or until death, and other etiologies excluded.

(Note: CNS infarction includes hemorrhagic infarctions, types I and II

<u>ischemic stroke</u>: An episode of neurological dysfunction caused by focal cerebral, spinal, or retinal infarction.

silent CNS infarction: Imaging or neuro-pathological evidence of CNS infarction, without a history of acute neurological dysfunction attributable to the lesion.

<u>intracerebral hemorrhage</u>: A focal collection of blood within the brain parenchyma or ventricular system that is not caused by trauma.

(Note: Intracerebral hemorrhage includes parenchymal hemorrhages after CNS infarction, types I and II

stroke caused by intracerebral hemorrhage: Rapidly developing clinical signs of neurological dysfunction attributable to a focal collection of blood within the brain parenchyma or ventricular system that is not caused by trauma.

<u>Silent cerebral hemorrhage</u>: A focal collection of chronic blood products within the brain parenchyma, subarachnoid space, or ventricular system on neuroimaging or neuropathological examination that is not caused by trauma and without a history of acute neurological dysfunction

attributable to the lesion.

<u>Subarachnoid</u> hemorrhage: Bleeding into the subarachnoid space (the space between the arachnoid membrane and the pia mater of the brain or spinal cord).

Stroke caused by subarachnoid hemorrhage: Rapidly developing signs of neurological dysfunction and/or headache because of bleeding into the subarachnoid space (the space between the arachnoid membrane and the pia mater of the brain or spinal cord), which is not caused by trauma.

<u>Stroke</u> caused by cerebral venous thrombosis: Infarction or hemorrhage in the brain, spinal cord, or retina because of thrombosis of a cerebral venous structure. Symptoms or signs caused by reversible edema without infarction or hemorrhage do not qualify as stroke.

<u>Stroke</u>, not otherwise specified: An episode of acute neurological dysfunction presumed to be caused by ischemia or hemorrhage, persisting ≥24 hours or until death, but without sufficient evidence to be classified as one of the above.

(Sacco et al., 2009)

Indeed neuroimaging studies, especially using MRI, on stroke patients and people without a prior history of stroke have revealed silent cerebral infarction and/or silent hemorrhage, which are five times more common than stroke with symptoms (*Deepadarshan et al.*, 2016).

Stroke is the third leading cause of death after ischemic heart disease and cancer in many developed countries and it is one of the most important causes of long hospital admission and long term disability in the most industrialized populations and developed world. It causes a major financial burden on medical health care; it also causes extensive human and family prolonged functional

disability and associated mortality (El-Tallawy et al., 2013).

In neurological disorders; the CVS represents the great percent of diseases admitted to the hospitals which is (58.5%) then inflammatory diseases of CNS, disorders of spinal cord and root and epilepsy (Alain et al., 2017).

In the African country Nigeria; many studies were don over 3 years reported that; stroke was the commonest. It accounts for 50.4% of cases admitted in hospitals, the second disease was CNS infection (14.2%) while myelopathies represented (8.1) followed by epilepsy. Also in the city of Ojini the hospital based study found that CVS was the commonest neurological disease (50%) then infection of CNS (25%) (*Dayna et al.*, 2011).

500 people per 100,000 are currently living with post stroke consequences and it is suggested at 2030, CVS related disability will rank as the 4th leading cause of disability-adjusted life years, relating to the years lost due to illness. It not only alters the lives of those who suffered the stroke but also it influences the lives of the victim's family and loved ones as well as caregivers it also influence the psychiatric state namely the mood (*Kalafu et al.*, 2000).

According to World Health Organization (WHO) estimates, in 2002, 5.5 million people died of stroke in 2002 and roughly 20% of these deaths occurred in South Asian Countries which are overcrowded and ideal developing countries (India, Pakistan, Bangladesh, and Sri Lanka) The incidence and mortality of stroke increase with age, and as the elderly population is rapidly growing in most developed countries ischemic stroke is a common societal burden with substantial economic costs.

Hemorrhagic stroke is more prevalent in the developing countries (Fredriksson et al., 1992).

The Imaging in all cases with a clinical picture of acute cerebrovascular stroke is an important topic to all emergency physicians, neurologists, neurosurgeons and neuro-radiologist. The American College of Radiology (ACR) continually updates its guidelines for imaging pathways through the ACR Appropriateness Criteria (American College of Radiology, 2009).

Non-contrast head CT is the first-line imaging test for acute stroke patients to rule out intracranial hemorrhage and large infarct. When possible, CT angiography should be the next imaging study after IV-tPA administration in acute stroke patients to evaluate for large-vessel occlusion. Core infarct volume demonstrated by DWI has been shown to predict outcomes in stroke patients, with core infarct volume more than 70 mL indicative of poor outcomes even with thrombectomy. The importance of the ischemic penumbra in acute stroke has been demonstrated (*Michael et al.*, 2017).

Confirmation of location of CNS hemorrhage, i.e., intra-cerebral, intra-ventricular, subarachnoid, intra-spinal or retinal, is available. Under the circumstance, stroke mimics can be reliably excluded. Depending on thoroughness of investigations, the underlying etiology may be elucidated or assumed from the known history of vascular risk factors. Hemorrhagic stroke can be a complication of ischemic stroke especially following acute revascularization (*Mudassir et al., 2010*).

Aim of the study

Aim of the current study is to investigate the clinical characteristics of cerebrovascular stroke; hemorrhagic and ischemic types in Sohag government hospitals including; risk factors, types and short term prognosis.