

Impact of Parental Knowledge and Coping Strategies on Glycemic Control of Diabetic Children in Ain Shams University Hospital, 2018

Thesis

Submitted For Partial Fulfillment of Master Degree in Epidemiology

By

Nabila Mohammed Raouf Khallaf

(M.B.B.Ch), Demonstrator of Epidemiology.

Department of Community, Environmental and Occupational Medicine

Under Supervision of

Prof. Fatma Abdel Salam Meky

Professor of Public Health Department of Community, Environmental and Occupational Medicine

Ass. Prof. Aya Mostafa Kamal Eldin

Assistant Professor of Public Health Department of Community, Environmental and Occupational Medicine

Dr. Ayat Farouk Manzour

Lecturer of Public Health
Department of Community, Environmental and Occupational Medicine

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALIAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Fatma Abdel Salam Meky, Professor of Public Health, Faculty of Medicine-Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Aya Mostafa Kamal Eldin, Assistant Professor of Public Health, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. Ayat Farouk Manzour, Lecturer of Public Health, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Nabila Mohammed

List of Contents

Title Page No.
List of Tablesi
List of Figuresiii
List of Abbreviationsiv
Introduction1
Aim of the Work8
Review of Literature
Glucose Homeostasis and Pathophysiology of Type 1 Diabetes9
Epidemiology, Complications, Diagnosis and Treatment of Type 1 Diabetes
Parental Diabetes Specific Knowledge and Different Coping Strategies Adopted by the Parents of Diabetic Child
Methodology 63
Results
Discussion
Limitations and strenghts
Conclusion
Recommendations
Summary
References
Appendix
Protocol
Arabic Summary

List of Tables

Table No.	Title	Page No.
Table (1):	Etiologic classification of diabetes based on the position statement	
Table (2):	Diagnosis of diabetes and pre-diabete	es17
Table (3):	Characteristics of diabetic child	74
Table (4):	Characteristics of the parents of child	
Table (5):	Frequency of right answers of each of knowledge questions	U .
Table (6):	Relation between maternal diabete knowledge level & children's demographic/clinical factors	socio-
Table (7):	Relation between maternal diabete knowledge level & their socio-dem factors	es-specific nographic
Table (8):	Relative frequency of maternal related stressor	
Table (9):	Relation between different demographic/ clinical factors of the comaternal diabetes-related stress level	hild and
Table (10):	Relation between mothers' socio-dem and their diabetes-related stress level	~ -
Table (11):	Coping strategies of the mothers	93
Table (12):	Correlation between child's age and a coping strategies	
Table (13):	Effect of gender of the child on a coping strategies	
Table (14):	Correlation between duration of the and maternal coping	
Table (15):	Correlation between mothers' age an strategy	d coping

List of Tables (Cont...)

Table No.	Title Page No.
Table (16):	Effect of the education of the mother on coping
Table (17):	Effect of family income on coping strategy 103
Table (18):	Effect of knowledge levels on coping strategies
Table (19):	Effect of diabetes-related stress levels on coping strategies
Table (20):	Post-hoc comparison between different stress level and coping strategies
Table (21):	Levels of glycosylated hemoglobin (HbA1c) of diabetic children 110
Table (22):	Relation between glycosylated hemoglobin (HbA1c) levels and sociodemographic/clinical characteristics of the child
Table (23):	Relation between glycosylated hemoglobin (HbA1c) levels and sociodemographic characteristics of the mothers
Table (24):	Effect of maternal diabetes-specific knowledge and diabetes-related stress levels on glycosylated hemoglobin (HbA1c) levels of the child
Table (25):	Correlation between different coping strategies and glycosylated hemoglobin (HbA1c)
Table (26):	Multiple linear regression analysis between child's factors, maternal factors and child's HbA1c

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Maintenance of blood glucose leglucagon and insulin	
Figure (2):	Timeline of β-cell mass decline	15
Figure (3):	The estimated number of new cases diabetes mellitus (T1DM) in child years of age) per 100,000 individuals	ren (<15
Figure (4):	Environmental triggers for autoimmunity and promoters of preto type 1 diabetes.	ogression
Figure (5):	Progression of diabetic nephropathy	35
Figure (6):	Transactional Model of Stress and C	oping 44
Figure (7):	A proposed model for the risk and proposed model for the risk and proposed factors related to maternal and a adjustment to chronic illness base Transactional Stress and Coping Mo	dolescent d on the
Figure (8):	Levels of maternal diabete knowledge	
Figure (9):	Levels of maternal diabetes-related s	stress 88

List of Abbreviations

Abb.	Full term
ABIS	All Babies In Swede
ADA	American Diabetes Association
DAISY	Diabetes Auto-immune Study in Young
DKT	Diabetes Knowledge Test
DN	Diabetic Nephropathy
DR	Diabetic Retinopathy
<i>ESRD</i>	End Stage Renal Disease
GFR	Glomerular Filtration Rate
HbA1c	Glycosylated Hemoglobin
<i>IDDM</i>	Insulin Dependent Diabetes Mellitus
<i>NDDG</i>	National Diabetes Data Group
OGTT	Oral Glucose Tolerance Test
RSQ	Responses to Stress Questionnaire
<i>SMBG</i>	Self-Monitoring Blood Glucose
TRIGR	Trial to reduce IDDM in Genetically At Risk
<i>UAE</i>	Urinary Albumin Excretion
VP	Viral Protein
WHO	World Health Organization

Abstract

The most common adopted coping strategies by the mothers were acceptance of disease, emotional arousal and avoidance with relative scores (71.6%, 69.3% and 68.8%) respectively. While, the least adopted coping strategies were involuntary disengagement (Inaction, cognitive inference and emotional numbing) with relative scores (29.4%, 29% and 27.3%) respectively.

HbA1c in the studied children is it is negatively correlated with cognitive restructure, positive thinking, acceptance and wishful thinking.

Recommendations include implementation of regular health education sessions for parents to raise awareness and to instruct them about the proper way to manage diabetes, increase their knowledge about its possible complications, and to help them to find a way to lower their stress.

Keywords: Insulin Dependent Diabetes Mellitus - Glomerular Filtration Rate - Diabetic Retinopathy

Introduction

Type 1 diabetes trends in Egyptian children have been increased in the past two decades (El-Ziny et al., 2014). The calculated age-adjusted type 1 diabetes incidence among children younger than 15 years old was 0.7, 2.0 and 3.1 per 100,000 in 1996, 2006 and 2011, respectively, while ageadjusted type 1 diabetes prevalence among children younger than 15 years old in the same years was 1.9, 15.5 and 26.8 per 100,000 respectively (*El-Ziny et al.*, *2014*).

The diagnosis of a child with type 1 diabetes is a great challenge for parents especially when the child isn't developmentally able to manage the disease independently (Gray et al., 2013). The special requirements related to glycemic control (frequently reminding the child about taking care of him/herself, frequent clinic/hospitals visits), feeling guilty about the child's disease, feeling embarrassed when telling others about the child's disease, and worrying about the future of the child may lead to psychological stress among the parents (Compas et al., 2012). This parental stress may lead to "diabetes burnout" which is a state of getting tired from the responsibilities of diabetes care and may leads to a neglecting behavior towards their children's disease (Compas et al., 2012).

Diabetes-specific knowledge of the parents is important factor in proper management of diabetes in their children (*Erika*, 2013). Parents need to learn how to accurately

calculate insulin dose and different sites of insulin injection, manage the daily diet of the child, recognize the symptoms of hypoglycemia/hyperglycemia and other complications, measure the concentrations of glucose and ketone bodies in the blood and urine, monitor foot health of the child and learn more about the role of exercise on blood glucose levels (*Cruz et al.*, 2017).

The ways of parental coping have a great implication on the glycemic control of the child (Jaser et al. 2014). According to Folkman and Lazarus 1988 coping is "a multidimensional process referring to how individuals deal with stress, involves conscious cognitive and/or behavioral efforts to deal with events appraised as stressful, or exceeding the resources of the individual". Coping responses may be engagement coping or disengagement coping; each of them may be primary or secondary (Grey et al., 2009).

Primary control engagement coping is directed towards rational management of the disease itself; and includes problem solving, emotional expression, and emotional regulation. Secondary control engagement coping focuses on adapting to the difficulties associated with the disease and includes cognitive restructure, positive thinking, acceptance, asking for help from others and turning to religion. However, disengagement ways of coping include avoidance, denial, social isolation and behavioral or mental disengagement which directed away from the problem (Grev et al., 2009).

AIM OF THE WORK

Goal

To improve quality of life of diabetic children and coping with the disease.

Objectives

- 1. To determine parental diabetes-specific knowledge level regarding medications, diet, physical activity, blood glucose monitoring at home, care for hypoglycemia in their diabetic children aged from 2 to 14 years.
- 2. To measure parental diabetes-related stress and identify different parental coping strategies in response to their children's illness.
- 3. To determine the effect of parental diabetes-specific knowledge, parental diabetes-related stress, and adopted parental coping strategies on glycemic control of their diabetic children.

Chapter 1

GLUCOSE HOMEOSTASIS AND PATHOPHYSIOLOGY OF TYPE 1 DIABETES

Glucose metabolism is a critical process for normal physiological functions of the body. Glucose has two main functions as a source of energy and as a source of essential material for almost all types of physiological reactions. The brain uses about 120 grams of glucose daily, 60-70% of the total body glucose. Brain function begins to be seriously affected when glucose levels fall below ~40 mg/dl. Ketone bodies can enter the brain and can be used for energy in emergencies as in severe hypoglycemia (*Mergenthaler et al.*, 2013).

1.1. Synthesis and release of insulin

Insulin is a peptide hormone. It is synthesized in the rough endoplasmic reticulum as a precursor protein called prepro insulin; it is then converted to pro-insulin. Pro-insulin is kept into secretory vesicles, where it is processed into the mature peptide hormone (*Sun et al.*, 2015).

Under normal conditions, 3-5% of the insulin secretion is in the form of pro-insulin. During periods of high rates of insulin release, the maturation process is not totally completed, and therefore larger amount of pro-insulin up to 10-20% can be found in the circulation (*Sun et al.*, 2015).