The Influence of the MDR1 C3435T Polymorphism on Methotrexate Responsiveness in Rheumatoid Arthritis Patients

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Clinical Pathology

Presented by Sara Salem Tolba Eissa

M.B.B. Ch, MSc (Clinical Pathology)
Ain Shams University

Supervised by

Professor/ Shahira Fathy El Fedawy

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Professor/ Abeer Al Sayed Ali Shehab

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Professor/ Rania Ahmed Abo-Shady

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Professor/ Samah Abdel Rahman ElBakry

Professor of Internal Medicine and Rheumatology Faculty of Medicine - Ain Shams University

Doctor/ Dina Aly Mohamed Aly Ragab

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2019

No words can express my deepest appreciation and profound respect for **Prof. Dr. Shahira Fathy El Fedawy,** Professor of Clinical Pathology, Ain Shams University, for her continuous guidance and support. She has generously devoted much of her time and her effort for planning and supervision of this study.

Also, my profound gratitude to **Prof. Dr. Abeer Al Sayed Ali Shehab**, Professor of Clinical Pathology, Ain Shams University, for her kind supervision and support. It was great honor to work under her supervision.

I would like also to thank **Prof. Dr. Rania Ahmed Abo-Shady**, Professor of Clinical Pathology, Ain Shams
University Hospitals, for her support, help and
constructive criticism during this work.

I would like also to thank **Prof. Dr. Samah Abdel Rahman ElBakry**, Professor of Internal Medicine and Rheumatology Ain Shams University Hospitals, for her support and help during this work.

Also, my profound gratitude to **Ass. Prof. Dr. Dina Aly Mohamed Aly Ragab**, Assistant Professor of Clinical Pathology, Ain Shams University, for her great care and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

Subject	Page No.
List of Figures	I
List of Tables	II
List of Abbreviations	IV
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Rheumatoid Arthritis	4
Chapter (2): Methotrexate therapy of RA	43
Subjects and Methods	63
Results	76
Discussion	90
Summary and Conclusion	98
Recommendations	101
References	102
Arabic Summary	

List of Figures

Fígure	Títle	Page
Fig. 1	The interaction between the peptide-	7
	MHC complex on an antigen-presenting	
	cell (APC) and the T cell receptor (TCR).	
Fig. 2	Cytokine signalling pathways involved in	12
	RA	
Fig. 3	Normal joint and rheumatoid arthritis	14
T1 4	joint	0.0
Fig. 4	Molecular structures of the currently	39
D' E	used TNF antagonists	4 5
Fig. 5	Intracellular pharmacodynamics of	45
Eig 6	Methotrexate	1.0
Fig. 6	Schematic illustration of methotrexate pathway	46
Fig. 7	Schematic illustration of adenosine	47
1 1g. 7	accumulation after ATIC inhibition by	77
	MTX	
Fig. 8	Multiple molecular mechanisms	50
0	underlying cellular resistance to	
	methotrexate	
Fig. 9	MDR1 gene location	53
Fig. 10	P-glycoprotein efflux pump	54
Fig. 11	Schematic diagram of human P-gp and	58
	the location of common polymorphisms	
Fig. 12	Adverse effects of MTX	79
Fig. 13	Frequency of MDR1 C3435T genotypes	80
TI 44	in the whole studied RA patients	0.4
Fig. 14	Frequency of MDR1 C3435T SNP	84
	genotypes among non-responders and	
E!~ 4 F	responders groups	٥٣
Fig. 15	The frequency of C&T alleles of MDR1	85
	C3435T SNP in patients with and without	
	MTX induced adverse effects	

I

List of Tables

Table	Títle	Page
Table 1	2010 ACR-EULAR classification criteria	21
	for RA	
Table 2	DAS28-ESR score Interpretation	65
Table 3	The PCR reaction mix	73
Table 4	Descriptive Statistics of clinical data in	76
	RA Patients	
Table 5	Descriptive statistics of various studied	77
	parameters among RA patients included	
Table 6	Descriptive Statistics of treatment	77
	regimens among the studied RA Patients	
Table 7	Overview of adverse effects of MTX	78
Table 8	Descriptive Statistics of the genotypes	79
	and alleles frequencies of the MDR1	
	gene SNP among the whole patients	
	group	
Table 9	Comparative statistics of clinical data	81
	between non-responders and	
	responders	
Table 10	Comparative statistics of treatment	82
	between non-responders and	
	responders	
Table 11	Comparative statistics of various	83
	studied parameters between non-	
	responders and responders	
Table 12	Comparative statistics between	84
	responders and non-responders groups	
	as regard MDR1 C3435T genotypes	

Table	Títle	Page
Table 13	Comparative Statistics of allele	86
	frequencies of the MDR1 C3435T SNP in	
	non-responders and responders groups	
Table 14	Comparative statistics between the	87
	genotypes frequencies as regard MTX	
	induced adverse effects	
Table 15	Comparative statistics of MDR1 C3435T	87
	genotypes frequencies as regard MTX	
	induced adverse effects subtypes	
Table 16	Comparative statistics between patients	88
	with and without MTX induced adverse	
	effects as regard allelic frequencies	

List of Abbreviations

• **ABC** : ATP binding cassette proteins

• ABCB1 : ATP binding cassette subfamily B member 1 gene

ACPA : Anti-citrullinated protein antibodiesACR : American College of Rheumatology

• **ADP** : Adenosine diphosphate

• AICAR : 5-aminoimidazole-4-carboxamide ribonucleotide

ALT : Alanine aminotransferase
 AMP : Adenosine monophosphate
 ANA : Antinuclear antibodies
 anti-CarP : Anti-carbamylated protein

anti-CCP : Anti-cyclic citrullinated peptide antibodies
 anti-MCV : Anti-mutated citrullinated vimentin antibodies

APC : Antigen-presenting cellAST : Aspartate aminotransferase

• ATIC : 5-aminoimidazole-4-carboxamide ribonucleotide

• ATP : Adenosine triphosphate

• **bDMARDs** : Biologic disease modifying antirheumatic drugs

CBC : Complete blood count
CCP : Cyclic citrullinated peptide
CCP1 : First generation ACCP assay
CCP2 : Second generation ACCP assay
CCP3 : Third generation ACCP assay
CD : Cluster of differentiation

• **cDMARDs** : Conventional disease-modifying antirheumatic

• **CH2-FH4** : 5,10-methylenetetrahydrofolate

CI : Confidence intervalsCRP : C-reactive protein

CTLA4 : Cytotoxic T-lymphocyte antigen 4
 DAS 28 : Disease Activity Score 28 deiminases

DHFR : Dihydrofolate reductaseDIP : Distal interphalangeal joints

• **DMARDs** : Disease-modifying antirheumatic drugs

• **DNA** : Deoxyribonucleic acid

• **dNTP** : Deoxyribonucleotide triphosphate drugs

• **dTMP** : Deoxythymidine monophosphate

dTTP : Deoxythymidine triphosphate
 dUMP : Deoxyuridine monophosphate
 EDTA : Ethylenediaminetetraacetic acid

• ELISA : Enzyme-linked immunosorbent assay

• **ESR** : Erythrocyte sedimentation rate

• **EULAR** : European League Against Rheumatism

Fab : Fragment antigen-bindingFc : Fragment crystallizable

• FDA : Food and Drug Administration

FH₂ : Dihydrofolate
 FH₄ : Tetrahydrofolate
 FOLT : Folate transporter

• **FPGS** : Folylpolyglutamate synthetase

• **GGH** : γ-glutamyl hydrolase

• **GH** : The patient global health assessment

• **GIT** : Gastrointestinal tract

• **Hb** : Hemoglobin

HCQ : Hydroxychloroquine HCV : Hepatitis C virus

• **HLA** : Human leucocyte antigen

HS : Highly significant
IFN-γ : Interferon γ
Ig : Immunoglobulin
IL : Interleukin

• **IL-1ra** : Interleukin -1 receptor antagonist

IMP : Inosine monophosphate
 IQR : Interquartile range
 ITP : Inosine triphosphate

• **ITPA** : Inosine triphosphate-pyrophosphatase

IU : International unitIAK : Janus kinase

In ESR : The natural logarithm of the ESR
 MCP : Metacarpophalangeal joint
 MDR1 : Multidrug resistance 1 gene

MHC : Major histocompatibility complex

• ml : Milliliter

• MMPs : Matrix metalloproteinases

• mRNA : Messenger RNA

MRP : MDR-associated proteinMTP : Metatarsophalangeal joint

• MTX : Methotrexate

• MTX-Glu : Polyglutamated methotrexate

• NF-κB : Nuclear factor kappa light chain enhancer of

activated B-cells

• NS : Non-significant

• **OPGL** : Osteoprotegerin ligand

• **OR** : Odds ratio

P. ging
PADs
Peptidyl-arginine deiminase
PCR
Polymerase chain reaction
Pgp
Permeability glycoprotein
PIP
Proximal interphalangeal joint

• **PLT** : Platelets

PPAD : Porphyromonas gingivalis peptidyl-arginine
 PTPN22 : Protein tyrosine phosphatase non-receptor 22

RA : Rheumatoid arthritisRF : Rheumatoid factor

• **RFC1** : Reduced folate carrier protein

• RNA : ribonucleic acid

rpm : Revolution per minuters : Reference SNP cluster

S : SignificantSE : Shared epitopeSIC : Swollen joint counts

SLC19A1 : Solute carrier family 19 member 1
 SNP : Single nucleotide polymorphism

• **SPSS** : Statistical package for the social sciences

SSZ : SulfasalazineTCR : T cell receptor

• **TGF-** β : Transforming growth factor β

• **Th17** : Type 17 helper T

List of abbreviations

TJC : Tender joint counts
TLC : Total leukocyte count
TLR : Toll-like receptor
TNF : Tumor necrosis factor
TS : Thymidylate synthetase

• tsDMARDs : Targeted synthetic disease modifying

antirheumatic drugs

TYMS : Thymidylate synthetaseULN : Upper limit of normal

Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily targeting the synovial joints causing joint damage and significant functional impairment (*Choy*, 2012).

The management of RA rests primarily on the use of disease-modifying anti-rheumatic drugs (DMARDs). These agents are commonly characterised by their capacity to reduce signs, symptoms and progression of joint damage (*Smolen et al., 2007*). Methotrexate (MTX), one of the DMARDs, remains the mainstay for treatment in the majority of patients with RA (*Smolen et al., 2014*).

However, methotrexate is associated with immunosuppression, which may lead to bone marrow depression and increased susceptibility to infection (van Ede et al., 1998).

The human multidrug resistance gene 1 (MDR1) encodes a plasma membrane, P-glycoprotein (P-gp), which functions as a transmembrane efflux pump for various structurally unrelated anticancer agents and toxins. Polymorphisms in the MDR1 gene may have an impact on

the expression and function of P-gp, thereby responsiveness to drugs (*Chen et al.*, 2012).

Lately, a silent C3435T polymorphism in exon 26 of MDR1 has been reported to be importantly associated with the expression and function of P-gp, and thus, the MDR1 polymorphism may have an impact on the expression and influence the response to methotrexate in RA patients (*Chen et al., 2012*).

Aim of the Work

The aim of this study is to determine the influence of the MDR1 C3435T polymorphism on Methotrexate responsiveness in rheumatoid arthritis patients.

Rheumatoid Arthritis

Rheumatoid arthritis is a chronic inflammatory autoimmune and systemic disease characterized by chronic synovial inflammation, hyperplasia and joint damage leading to functional decline and disability. Systemic features of RA include cardiovascular complications, pulmonary complications and skeletal disorders. Although systemic manifestations may be present at the onset, they develop more usually as the disease progresses (*Giasuddin et al.*, 2014).

In socio-economic terms, RA is the most common and most important of the inflammatory rheumatic diseases, with a prevalence of \sim 1% of the population worldwide and 0.3% in Egypt (*Usenbo et al.*, 2015).

The relatively high prevalence, irreversible joint damage and widespread occurrence of co-morbidities determine the huge social impact of this disease. A therapeutic window of opportunity exists early in the course of the disease during which the introduction of aggressive antirheumatic therapy can result in a change in the course of disease, leading to protection against progressive joint destruction, prevention of disability and potential lowering of the risk of cardiovascular co-morbidity. Advances in understanding the pathogenesis of the disease have

fostered the development of new therapeutics, with improved outcomes (Myasoedova et al., 2010).

I- Predisposing Factors for RA:

A. Genetic factors:

Several factors have strongly suggested that genetics are a major influence on the development of RA. These factors include the general increased prevalence of RA within families, leading to estimations of familial risk contribution of ~40-50% of seropositive RA, with strongest risks seen in first-degree relatives (*Nordang et al.*, 2013).

The largest genetic risk factor for RA lies within the human leucocyte antigen (HLA) class II region that encodes the HLA-DRB1 molecule. Specific HLA-DRB1 alleles as DRB1*04 (*04:01, *04:04) and *01 (*01:01) alleles, and DRB1*10 and *14 alleles (*10:01, *10:02, *14:02 and *14:17) were reported to be associated with anti-citrullinated protein antibodies (ACPA)-positive RA which has been related to a more aggressive disease with more frequent erosions RA (*Nordang et al., 2013*).

A characteristic for these alleles is that they encode a conserved sequence of amino acids, the so-called "shared epitope" (SE), comprising residues 70–74 in the third hyper variable region of the DR1 chain. These residues constitute a helical domain forming one side of the antigen binding site, a site likely to affect antigen presentation (*Newton et al.*, 2004).