

Prevalence of Glaucoma among High Myopia

Thesis

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

By

Omnia Mohammed Abd El-Fatah

M.B.B.Ch Faculty of Medicine, Cairo University

Under Supervision of

Prof. Dr. Osama Abd El Kader Salem

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Amr Ismail El Awamry

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Yasser Abd El Maguid El Zanklony

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Ophthalmology department
Faculty of Medicine, Ain Shams University
Cairo, Egypt
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First, thanks are all due To Allah goes My deepest gratitude and thanks for achieving any work in my life.

I would like to express my deepest gratitude to **Prof. Dr. Osama Abd-El-Kader Salem**, Professor of Ophthalmology, Faculty of Medicine-Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work

I am also delighted to express my deepest gratitude and thanks to Dr/Amr Ismail El-Awamry, Assistant Professor of Ophthalmology, Faculty of Medicine, Ain Shams University for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr/ Yasser**Abd -El-Maguid El-Zankalony, Ass.

Professor of Ophthalmology for his great help, outstanding support, active participation and guidance.

Finally, I am most grateful to all members of my family for giving me great support.

Omnia Mohammed

Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vii
Introduction	1
Aim of the Work	12
Review of Literature	
> Myopia	13
ኞ Glaucoma	24
Myopia and Glaucoma	32
Patients and Methods	53
Results	59
Discussion	85
Summary and Conclusion	89
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Conversion table for Snellen's to equivalent	_
Table (2):	Clinical characteristics of distribution study group	
Table (3):	Percentage of glaucoma among study	y group 61
Table (4):	Predictors of glaucoma in our study a	group 62
Table (5):	Relation between glaucoma and a hemifield test in visual field assessm	•
Table (6):	Relation between glaucoma and RN parameters	
Table (7):	Logistic regression analysis for pred glaucomatous (G) group	
Table (8):	Receiver operating characteristic (ROC) of our study group	
Table (9):	A female patient with high myopia one	
Table (10):	Parameters of her reliable visual fiel	d:75
Table (11):	OCT-ONH shows thickness of RNFI one	
Table (12):	A male patient with high myopia of o	case two 77
Table (13):	Parameters of visual field	77
Table (14):	OCT-ONH shows thickness of RNF two	
Table (15):	A female patient with high myopia three	
Table (16):	Parameters of visual field of case thr	ee79

List of Tables (Cont...)

Table No.	Title	Page No.
Table (17):	OCT-ONH shows thickness of RNFL three	
Table (18):	A female patient with high myopia four	
Table (19):	Parameters of visual field of case four	81
Table (20):	OCT-ONH shows thickness of RNFL four	
Table (21):	A female patient with high myopia five	
Table (22):	OCT-ONH shows thickness of RNFL five	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Exaggerated representation of refractive errors caused by abnorn growth	nal eye
Figure (2):	A fundus photograph of the retin person with degenerative myor compared with that of a normal pretina	pia is person's
Figure (3):	Color photograph demonstrating areas of zone alpha and beta peripa atrophy	apillary
Figure (4):	Myopic temporal crescent	22
Figure (5):	Tilted disc with inferior scleral cresc	ent 23
Figure (6):	Aqueous Humor Drainage Pathw Healthy and Glaucomatous Eye	
Figure (7):	Schematic Illustration of Normal A and Neurodegenerative Changes Ass With Glaucomatous Optic Neuropathy	sociated
Figure (8):	Normal, Glaucomatous, and Glaucomatous Optic Nerve Head Visual Field Test Results	ls and
Figure (9):	Imaging Assessment of the Optic and Retinal Nerve Fiber Layer Spectral-Domain Optical Col Tomography	Using nerence
Figure (10):	Enlargement of the optic nerve highly myopic eyes occurs due to str of the scleral canal and lamina cribro	etching

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (11):	Retinal nerve fiber layer (RNFL) are by optical coherence tomography shows RNFL thickness scan of myopic	(OCT)	42
Figure (12):	Single visual field printout, central field of a right eye		44
Figure (13):	Visual field representation of a right	eye	46
Figure (14):	Two visual fields of a right eye, deter approximately 1 year apart		47
Figure (15):	RNFL defects involving the papillom bundle observed in eyes with high my		52
Figure (16):	Goldmann applanation tonometry		56
Figure (17):	Study group laterality	• • • • • • • • • • • • • • • • • • • •	60
Figure (18):	Percentage of glaucoma among group.		61
Figure (19):	Relation between UCVA, BCVA glaucoma.		63
Figure (20):	Relation between spherical equivalenglaucoma.		63
Figure (21):	Relation between intraocular pressurglaucoma.		64
Figure (22):	Relation between glaucoma and v cup/disc ratio.		64
Figure (23):	Relation between glaucoma and deviation in visual field assessment		65
Figure (24):	Relation between glaucoma and p standard deviation in visual assessment	field	65

List of Figures (Cont...)

Fig. No.	Title Page	e No.
Figure (25):	Relation between glaucoma and glaucom hemifield test in visual field assessment	
Figure (26):	Relation between glaucoma and RNFL OCT parameters.	
Figure (27):	Sensitivity and specificity of UCVA, BCVA spherical equivalent, intraocular pressur in our study group.	e
Figure (28):	Sensitivity and specificity of vertical cup disc ratio, mean deviation and patter standard deviation in visual fiel assessment in our study group	n d
Figure (29):	Sensitivity and specificity of average superior average and inferior average RNFL thickness parameters of OCT in ou study group.	e r
Figure (30):	Right visual field of case one.	75
Figure (31):	Left visual field of case one.	75
Figure (32):	Bilateral OCT-RNFL of case one	76
Figure (33):	Right visual field of case two	77
Figure (34):	Left visual field of case two	77
Figure (35):	Bilateral OCT-RNFL of case two	78
Figure (36):	Right visual field of case three	79
Figure (37):	Left visual field of case three	79
Figure (38):	Bilateral OCT-RNFL of case three	80
Figure (39):	Right visual field of case four.	81
Figure (40):	Left visual field of case four	81

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (41):	Bilateral OCT-RNFL of case four	82
Figure (42):	Right visual field of case five	83
Figure (43):	Right OCT-RNFL of case five	84

List of Abbreviations

Abb.	Full term
AUC	Area under Curve
	Best Corrected Viual Acuity
	Change- Coupled Device
dB	
	Enhanced Depth Imaging
G	2 0
<i>HM</i>	
	Intraocular Pressure
<i>IQR</i>	Inter- Quartile Range
<i>MD</i>	· ·
<i>MMD</i>	Myopic Macular Degenerations
	Non- Glaucoma
NRR	Neuroretina Rim
NTG	Normotensive Glaucoma
<i>OAG</i>	Open Angle Glaucoma
OCT	Optical Coherence Tomography
	Optic Nerve Head
OR	Odds Ratio
<i>POAG</i>	Open Angle Glaucoma Primary
<i>PPA</i>	Peripapilary Atrophy
<i>PPV</i>	Positive Predictive Value
<i>PSD</i>	Pattern Standard Deviation
<i>RNFL</i>	Retinal Nerve Fiber Layer
<i>ROC</i>	Receiver Operating Characteristic Curve
<i>RPE</i>	Retinal Pigment Epithelium
<i>SAP</i>	Standard Automated Perimetry
<i>SD</i>	Spectral Domain
SITA	Swedish Interactive Threshold Algorithm

List of Abbreviations (cont...)

Abb.	Full term
SLP	Scanning Laser Polaimetry
	Statistical Package for Social Science
<i>TD</i>	Time- Domain
TIGR	Trabecular Meshwork Induced Glucocorticoid Respone Protein
<i>UCVA</i>	Uncorrected Visual Acuity
<i>VF</i>	Visual field
VFI	Visual Field Index

ABSTRACT

Background: Glaucoma is an optic neuropathy that is characterized by the selective loss of retinal ganglion cells and their axons, which manifests as the loss of the retinal nerve fiber layer (RNFL). Numerous studies have shown that the extent of RNFL damage correlates with the severity of functional deficit in the visual field (VF), and that RNFL measurement by optical coherence tomography (OCT) has good sensitivity for the detection of glaucoma.

Purpose: To assess the prevalence of glaucoma among high myopic patients and the association between them using standard automated perimetry (SAP) and optical coherence tomography (OCT).

Patients and Methods: A prospective observational randomized cross sectional study included a total of 80 eyes with high myopia, in the period from November 2017 to April 2018. This cross sectional study included 44 subjects with 80 eyes regarding high myopia using the outpatient services of the Qlawoon Hospital, Cairo, who satisfied the inclusion and exclusion criteria between November 2017 and April 2018 aiming to determine the prevalence of glaucoma in high myopic patients.

Results: In our study, we depended on the following highly significant parameters in detection of prevalence of glaucoma among high myopic patients: Spherical equivalent median is -12, Vertical cup/disc ratio mean is 0.55, MD median of visual field is – 5.38, PSD mean of visual field is 3.53, GHT is 64.7% outside normal limits, 17.6% border line and 17.6% general reduction of sensitivity and RNFL thickness mean is; for average thickness is 86.37, for superior thickness is 90.06 and for inferior thickness is 82.68 a highly significant P-value.

Conclusion: Prevalence of glaucoma among our study group is 42.5% depending on Spherical equivalent median, Vertical cup/disc ratio mean, MD median of visual field, PSD mean of visual field, GHT and RNFL thickness.

Keywords: Glaucoma - high myopia - intraocular pressure - myopic macular degenerations

INTRODUCTION

Glaucoma is an optic neuropathy that is characterized by the selective loss of retinal ganglion cells and their axons, which manifests as the loss of the retinal nerve fiber layer (RNFL). Numerous studies have shown that the extent of RNFL damage correlates with the severity of functional deficit in the visual field (VF), and that RNFL measurement by optical coherence tomography (OCT) has good sensitivity for the detection of glaucoma (*Teng et al.*, *2017*).

High myopia (6 D or more) is a known risk factor for open angle glaucoma (*Chen et al.*, 2012).

Previous hospital-based studies and population-based investigations have shown that myopia, in particular high axial myopia, can be a risk factor for glaucomatous optic neuropathy (*Morgan et al.*, 2012).

It has remained unclear, which factors associated with myopia were responsible for the increased susceptibility for glaucomatous optic nerve damage in myopic eyes. Histological studies reported on morphological particularities in eyes with axial high myopia. These features included a thinning and stretching of the lamina cribrosa in the highly myopic secondary macrodiscs (also called megalodiscs), and an elongation and thinning of the peripapillary scleral flange in the parapapillary region of highly myopic optic nerve heads (*Jonas et al.*, 2013).

Clinical diagnosis of glaucoma in this group of patients is often difficult because of the variation in the sizes, shapes, tilt of the optic nerve head, and the presence of large peripapillary atrophy (PPA) in these eyes. In high myopia, RNFL loss also occurs more frequently in a generalized or diffuse pattern rather than in a localized pattern. These characteristics of highly myopic eyes make it difficult to accurately determine the cup-to-disc ratio and the extent of RNFL damage in susceptible patients (*Chang et al.*, 2013).

An early detection and follow up of glaucoma require functional testing using standard automated perimetry (SAP) as gold standard, particularly the 24–2 Swedish Interactive Threshold Algorithm (SITA) strategy, as well as structural testing which can be based on ophthalmic findings. But, one of the most reliable methods for objective and precise structural measurements of glaucomatous damage is the optical coherence tomography (OCT) which provides both quantitative and qualitative measurements of the RNFL thickness. OCT in diagnostics of the ONH structural changes became a part of standard procedure for diagnosis and monitoring of patients with retinal pathology. OCT is also highly sensitive in differentiating glaucomatous from non-glaucomatous ONH changes (Hsu et al., 2015).