

INTERDIALYTIC WEIGHT GAIN AND ITS RELATION TO OUTCOME AMONG PATIENTS ON MAINTENANCE HEMODIALYSIS

Thesis

Submitted for Partial Fulfillment of Master Degree in Nephrology

By

Masoud Khairy Ibrahim

M.B.B.CH.Mansura University, 2003 Diploma Degree of Internal Medicine, Zagazig University, 2010

Under Supervision of

Prof. Dr. Osama Mahmoud Mohammed Kamal

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Mohamed Saeed Hassan

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Maha Mohamed Mohamed Khalifa

Lecturer of Cardiology Faculty of Medicine - Ain Shams University

Acknowledgment

First of all I cannot give a word to fulfill my deepest thanks to "Allah" the most gracious and the most merciful.

I would like to express my deep thanks, recognition, and everlasting gratitude to *Prof. Dr. Osama Mahmoud Mohammed Kamal*, Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for his kind support.

I would also like to thank *Dr. Mohamed Saeed Hassan*, Lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for constant help and generous cooperation.

I am deeply thankful to *Dr. Maha Mohamed Mohamed Khalifa*, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

Lastly, I want to thank all my staff, my family, my colleagues and my patients without their help this work could not have been completed.

> Masoud Khairy Ibrahim 2019

List of Contents

Subject	Page
List of Abbreviations	Ι
List of Figures	III
List of Tables	IV
Introduction	1
Aim of the Work	4
Review of Literature	5
Chapter 1:Chronic kidney disease and hemodialysis	5
Chapter 2:Hemodialysis	19
Chapter 3:Cardiovascular complications in patients with	
CKD	
Patients and Methods	
Results	57
Discussion	84
Summary	99
Conclusion	101
Recommendations	102
References	103
Arabic Summary	

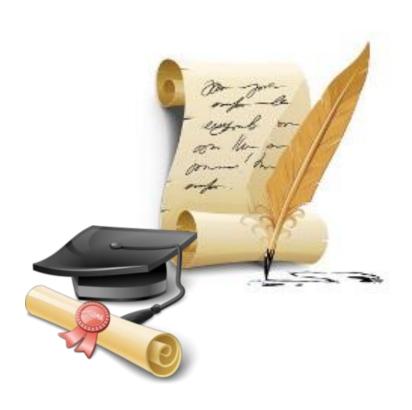
List of abbreviations

ADMA	asymmetric dimethylarginine
APC	antigen-presenting cell
AV	Arteriovenous
AVF	arterio - venous fistula
AVG	Arterio- venous graft
BIP	Biolar
BMI	body mass index
BP	blood pressure
Ca	Calcium
CAD	coronary artery disease
cAMP	Cyclical adenosine monophopsphate
CHOIR	The Correction of Hemoglobin and Outcomes in Renal
	Insufficiency
CKD	Chronic kidney disease
CKD-MBD	chronic kidney disease – mineral and bone disorder
CRF	chronic renal failure
CV	Cardiovascular
CVD	cardio-vascular diseases
DM	DIABETES MILLITUS
ECG	Electrocardiogram
ECV	
EDD	End Diastolic Diameter
EDV	End Diastolic volume
EF	ejection fraction
ESD	End Systolic Diameter
ESRD	end stage renal disease
ESV	End Systolic volume
FDA	Food and Drug Administration

FGF	fibroblast growth factor
FGF	fibroblast growth factor
GFR	Glomerular filteration rate
Неу	Homocysteine
HD	Hemodialysis
HTN	HYPERTENSION
ICV	inter cellular volume
IDWG	Interdialytic weight gain
iPTH	intact parathyroid hormone
IVC	inferior vena cava
KDIGO	Kidney Disease: Improving Global Outcomes
KDOQI	Kidney Disease Outcomes Quality Initiative
LA	left atrium
LV	left ventricular
LVH	left ventricular hypertrophy
MACCE	major adverse cardiac and cerebrovascular events
MBF	Myocardial blood flow
MBF	myocardial blood flow
mTOR	mammalian target of rapamycin
NAR	nitrogen appearance rate
PD	peritoneal dialysis
Po4	Phosphate
PTH	parathyroid hormone
PW	posterior wall
RPV	Relative plasma volume
TTE	Trans thoracic Echocardiography

List of Figures

No	Figure	Page
1	Technique of hemodialysis	20
2	Semipermeable membrane	21
3	A radiocephalic fistula	25
4	An arteriovenous graft	26
5	Schematic of a hemodialysis circuit	27
6	Volume overload versus IDWG.	43
7	Etiology of ESRD in both groups	58
8	Correlation between LVMI and hemoglobin at the	63
	start of the study in low IDWG group I	
9	Correlation between ejection fraction and ferritin	64
	at the start of the study in low IDWG group I	
10	Correlation between EF BIP and ferritin at the	65
	start of the study in high IDWG group II	
11	Correlation between LVMI and Hb at the start of	66
	the study in high IDWG group II	
12	Clinical data after one year	67


List of Tables

No	Table	Page
1	Baseline demographic, clinical data and comorbid	57
	conditions in both groups	
2	Etiology of ESRD in high and low IDWG groups	58
3	Laboratory investigations at the start of the study in	59
	both groups	
4	Echo data at the start of the study in both groups	60
5	Correlation between ECHO findings and	61
	demographic data at start of the study in group I	
	(low IDWG)	
6	Correlation between ECHO findings and	62
	demographic data at start of the study in group II	
	high IDWG	
7	Correlation between ECHO findings and laboratory	63
	data at the start of the study in group I low IDWG	
8	Correlation between ECHO findings and laboratory	65
	data at the start of the study in group II (high	
	IDWG)	
9	Clinical data after one year in both groups	67
10	Laboratory data after one year in both groups	68
11	Echo data after one year in both groups	69
12	Comparison between the laboratory data at the start	70
	of the study and after one year in group I (low	
	IDWG)	
13	Comparison between the laboratory data at the start	71
	of the study and after one year in group II high	
	IDWG	
14	Comparison between ECHO data at the start of the	72
	study and after one year in group I low IDWG	

15	Comparison between ECHO data at the start of the	73
	study and after one year in group II high IDWG	
16	correlation of echo data with demographic data after	74
	one year	
17	correlation between ECHO findings and	75
	demographic data after one year of the study in	
	group II high IDWG	
18	Correlation between echo cardiographic findings	76
	after one year and laboratory data (at the start of the	
	study and after one year) in group I	
19	Correlation between echo cardio graphic data after	77
	one year and laboratory data (at the start and after	
	one year) in high IDWG group II	
20	Delta changes between two groups	78
21	Pre EF BIP with demographic and laboratory data	79
	regressive analysis	
22	Pre LVMI with demographic and laboratory data	80
23	Pre EDD with demographic and laboratory data	81
24	Post EDD with laboratory data	81
25	Post ESD with laboratory data	82
26	Post ESD with laboratory data	83

Introduction

Introduction

Patients with end stage renal disease (ESRD) represent an important and increasingly prevalent portion of the medical patient, and the burden of concomitant illness is high in this patient population. Among ESRD patients treated with hemodialysis, the rate of hospitalization is 1.84/patient-year, with nearly one-third of these hospitalizations for cardiovascular (CV) causes (*Cabrera et al.*, 2015).

Fluid retention is a major clinical problem in individuals with ESRD, and is associated with lower extremity edema, anasarca, ascites, pulmonary vascular congestion or edema, hypertension and worsening heart failure (*Kalantar-Zadeh et al.*, 2009).

Interdialytic weight gain (IDWG), which corresponds to ultrafiltration losses during hemodialysis (HD), is the result of salt and water ingestion minus urine outputbetween two consecutive dialysis sessions (*Leeet al.*, 2014).

Theoretically, the consequences of this variable have a double meaning. On one hand, the water and salt intake occur frequently with caloric and protein foods, which mean it, would be associated with a better nutritional status (*Kalantar-Zadeh et al.*, 2009)

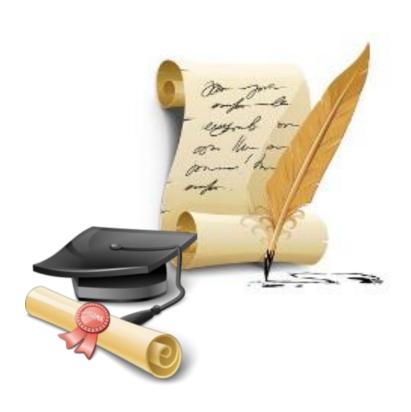
But, on the other hand, water and salt intake can give rise to a volume overload, which can be the key for the developing of high blood pressure and left ventriclular hypertrophy, both of which can increase the cardiovascular risk (*Kalantar-Zadehet al.*, 2009).

Other factors affecting IDWG include: residual renal function, sodium concentration in the dialysis fluid, saline solution infusions during the HD session, especially during its final minutes (*Lopez-Gomez et al.*, 2005)

Chronic kidney disease (CKD) is associated with increased cardiovascular morbidity, even from early stages. Decreased glomerular filtration rat (GFR) is a strong predictor of cardiovascular events, even in the absence of other cardiac risk factors. Risk for cardiovascular disease in CKD patients is 10-30 times higher than in non-CKD individuals and mortality from cardio-vascular diseases (CVD) accounts for approximately 50% from all causes of death in dialysis population. Predisposing features for developing CVD in CKD patients include both traditional and nontraditional uremia associated factors (*Nechita et al.*, 2015).

The phenomenon of HD induced myocardial stunning is common and associated with reductions in myocardial contractile function and patient survival. Measurement of myocardial blood flow (MBF) during dialysis demonstrated that HD can precipitate myocardial ischemia (*Burton et al.*, 2003).

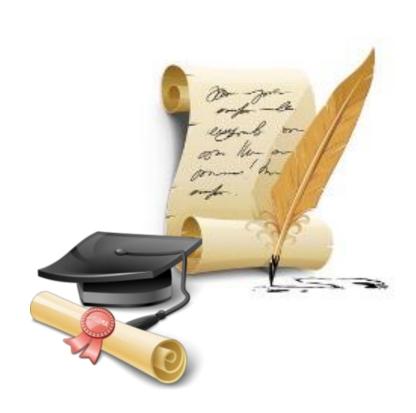
Myocardial stunning was originally described as 'delayed recovery of regional myocardial contractile function after reperfusion despite the absence of irreversible damage and despite restoration of normal flow'. Transient episodes of myocardial ischemia leading to prolonged left ventricular (LV) dysfunction were established as a cause of heart failure (*Zuidema & Dellsperge*, 2012).


In a multivariate analysis, age, predialysis cardiac troponin T levels, hypotension during dialysis, and ultrafiltration volumes independently predicted the occurrence of HD-induced cardiac injury and myocardial stunning (*Zuidema and Dellsperger*, 2012).

Previous studies have revealed that excessive IDWG is associated with adverse clinical outcomes, and to be an independent predictor of all-causes and cardiovascular mortality in patients undergoing long-term HD. In addition, accumulating evidence shows that IDWG is significantly associated with increase in blood pressure (BP) and left ventricular hypertrophy (LVH), both of which can increase the risk of cardiovascular mortality in patients with end-stage renal disease (ESRD) (*Leeet al.*, 2014).

The mechanism by which IDWG affects cardiovascular morbidity and mortality can be speculated from the cardiovascular burden of volume overload, volume fluctuation, and arterial hypertension. Daily fluctuations in extracellular fluid volume might promote cardiac remodeling by the activation of mammalian target of rapamycin (mTOR) pathway, sympathetic nervous system, and renin-angiotensin-aldosterone pathway resulting in LVH and cardiac fibrosis (*Lee et al.*, 2014).

Aim of the Work



Aim of the Work

To assess interdialytic weight gain and (its relation to morbidity and mortality) among patients on maintenance hemodialysis.

Review of Literature

