

USING SOME MICROORGANISMS IN WEED CONTROL AND THEIR DEVELOPMENT AS BIOHERBICIDES

Thesis
Submitted for Master Degree in Microbiology

By

Merhan Mohammed Galal Eldine Tawfik

B. Sc. (Microbiology/Chemistry), Ain Shams University, 2013

Under Supervision of

Prof. Dr. Mohamed A. Abouzeid

Professor of Microbiology Department of Microbiology Faculty of Science Ain Shams University

Prof. Dr. Mohamed A. Balah

Professor of Pesticides Plant Protection Department Desert Research Center

Dr. Nevin A. Ibrahim

Lecturer of Microbiology Department of Microbiology Faculty of Sciences Ain Shams University

(2019)

USING SOME MICROORGANISMS IN WEED CONTROL AND THEIR DEVELOPMENT AS BIOHERBICIDES

Thesis

Submitted for Master Degree in Microbiology

By

Merhan Mohammed Galal Eldine Tawfik

B. Sc. (Microbiology/Chemistry), Ain Shams University 2013

DEPARTMENT OF MICROBIOLOGY FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

2019

Approval sheet

USING SOME MICROORGANISMS IN WEED CONTROL AND THEIR DEVELOPMENT AS BIOHERBICIDES

By

Merhan Mohammed Galal Eldine Tawfik

B. Sc. (Microbiology/Chemistry), Ain Shams University, 2013

Supervisors

Prof. Dr. Mohamed A. Abouzeid

Professor of Microbiology, Department of Microbiology, Faculty of Science, Ain Shams University

Prof. Dr. Mohamed A. Balah

Prof. of Pesticides, Plant Protection Department, Desert Research Center

Dr. Nevin A. Ibrahim

Lecturer of Microbiology, Department of Microbiology, Faculty of Sciences, Ain Shams University

Examination committee

Prof. Dr. Tarek A. El-shahawy

Professor of weed biology and control, Botany department, National Research Center

Prof. Dr. Nasr E. El-Bordeny

Professor of Animal Nutrition, Animal production department, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohamed A. Abouzeid

Professor of Microbiology, Head of Microbiology department, Faculty of Science, Ain Shams University

Date of Examination: 13 / 3 / 2019

ACKNOWLEDGMENTS

Praise and thanks be to Allah, the most merciful for assisting and directing me to the right way. I would like to express my deepest sense of gratitude and appreciation to my supervisor Prof. Dr. Mohamed A. Abouzeid Prof. of Microbiology, Department of Microbiology, Faculty of Sciences, Ain Shams University. The door to Prof. Abouzeid office was always open whenever I ran into a trouble spot or had a question about my research or writing.

I would like to thank my thesis advisor Prof. Dr. Mohamed A. Balah Prof. of Pesticides, Plant Protection Department, Desert Research Center for the continuous and unlimited support and valuable instructions throughout the course of this thesis. Also, I would like to deeply thank Dr. Nevin A. Ibrahim for her assistance in master thesis laboratory experiments and identifying fungal species.

I would also like to thank all the members' staff of Plant protection department, Desert Research Center who helped me in my lab work.

Finally, I must express my very profound gratitude to my parents and to my sister and brother for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Contents

Title	
ABSTRACT	1
INTRODUCTION	5
REVIEW OF LITERATURE	10
Definition of weeds, classification and characterization	11
Weeds distribution in Egypt	11
Crop loss from weeds and other environmental risks	12
Weed Crop interference (competition-allelopathy)	14
Methods of weed control	16
Chemical herbicides "harms and resistance emergence"	17
Approaches of biological control in weed management	18
Biological control of weeds using bacteria	21
Biological control of weeds using fungi	22
Convolvulus arvensis (field bindweed) as a target weed	27
Biology and impact of Convolvulus arvensis	32
Biological control of Convolvulus arvensis	32
Portulaca oleracea (Purslane) as a target weed	34
Characteristics and biology of <i>Portulaca oleracea</i>	36
Biological control of Portulaca oleracea	36
Microbial phytotoxins in weed biocontrol	37
Mode of action of bioherbicides	38

MATERIALS AND METHODS	
Materials	44
1. Chemicals	44
2. Weeds	44
Methods	44
1. Sampling collection	49
2. Physical and chemical analysis of soil samples	49
3. Isolation of microorganisms from the collected samples	50
4. Effect of microbial culture filtrates on <i>Convolvulus arvensis</i> and <i>Portulaca oleracea</i> seeds	
5. Morphological and microscopic identification of fungal isolates	53
6. Characterization of bacterial isolates	56
7. Herbicidal potential of microbial crude extracts on <i>Convolvulus arvensis</i> and <i>Portulaca oleracea</i> seedlings	
8. Spectrochemical analysis of active compounds in microbial crude extracts by LC-MS/MS	
9. Molecular identification of active isolate	64
10. Applying <i>Myrothecium verrucaria</i> in pots containing weeds seedlings (Post emergence Test)	65
11. Statistical analysis of results	67
Results	68
1.Soil samples	70
2.Physical and chemical analysis of soil samples	70
3.Isolation of bacteria and fungi from samples	

4. Screening the herbicidal activity of bacterial and fungal isolates against <i>C. arvensis</i> and <i>P. oleracea</i> seeds (Preemergence test)		
F A -4'		
5.Active isolates identification morphologically, microscopically and biochemically		
5.1- Identification of active bacterial isolates		
6. Herbicidal potential of microbial crude extracts on weed seedlings		
7.Determining effective concentration (EC ₅₀) of active isolates		
8.Molecular identification of bacterial isolate		
9.LC-MS/MS analysis of active microbial extracts		
9.1- LC-MS/MS of Cladosporium cladosporioides FS73		
9.2- LC-MS of Pseudomonas aeruginosa FS15		
9.3- LC-MS of Myrothecium verrucaria FS80		
10.Applying <i>Myrothecium verrucaria</i> in pots containing <i>C. arvensis</i> and <i>P. oleracea</i> (Post emergence Test)		
DISCUSSION		
SUMMARY		
REFERENCES		

List of Tables

Table	Title	
1	Media used for isolation and biochemical tests	45
2	Weed types collected from selected areas	
3	GPS of each region involved in sampling collection	71
4	Physical and chemical analysis of Wady El- Natroun and Balouza, North Sinai soil sample	72
5	Bacterial isolates source and their locations	74
6	Fungal isolates source and their locations	76
7	The effect of bacterial culture filtrates on seed germination and seedling developing of <i>Convolvulus arvensis</i>	80
8	The effect of bacterial culture filtrates on seed germination and seedling developing of <i>Portulaca oleracea</i>	83
9	The effect of fungal culture filtrates on seed germination and seedling developing of <i>Portulaca oleracea</i>	87
10	The effect of fungal culture filtrates on seed germination and seedling developing of Convolvulus arvensis	89
11	Biochemical tests of active bacterial isolates	94

12	Effect of bacterial ethyl acetate crude extracts on total biomass fresh weight (mg) of Convolvulus arvensis	101
13	Effect of bacterial ethyl acetate crude extracts on total biomass fresh weight (mg) of <i>Portulaca oleracea</i>	102
14	Effect of fungal ethyl acetate crude extracts on total biomass fresh weight (mg) of Convolvulus arvensis	105
15	Effect of fungal ethyl acetate crude extracts on total biomass fresh weight (mg) of Portulaca oleracea	106
16	Effective concentration (EC ₅₀) of microbial crude extracts on total biomass fresh weight of weed seedlings	110
17	Profile of compounds interpreted from Cladosporium cladosporioides	119
18	Profile of compounds interpreted from Pseudomonas aeruginosa	123
19	Profile of compounds interpreted from <i>Myrothecium verrucaria</i>	126
20	Chlorophyll and Carotenoid content of Portulaca oleracea	130
21	Chlorophyll and Carotenoid content of Convolvulus arvensis	130
22	Effect of M. verrucaria spores spraying on fresh weight of <i>Portulaca oleracea</i> and <i>Convolvulus arvensis</i>	131

List of Figures

Fig.	Title	Page
1	Culture filtrates effect of four selected bacterial isolates on <i>Portulaca oleracea</i> and <i>Convolvulus arvensis</i> seed germination, shoot and root length	85
2	Culture filtrates effect of four selected fungal isolates on <i>Portulaca oleracea</i> and <i>Convolvulus arvensis</i> seed germination, shoot and root length	90
3	Microscopic images showing Gram stain of the four selected bacterial isolates: (a) PS, (b) FS15, (c) BS47, and (d) BRS2	93
4	Microscopic images of the four selected fungal isolates: (a) Aspergillus flavus FS76, (b) Aspergillus terreus FS67, (c) Cladosporium cladosporioides FS73, and (d) Myrothecium verrucaria FS80	98
5	Effect of <i>Pseudomonas sp.</i> isolate 1 crude extract on <i>Portulaca oleracea</i> total biomass fresh weight	103
6	Effect of <i>Myrothecium verrucaria</i> crude extract on <i>Convolvulus arvensis</i> total biomass fresh weight	107

7	Effect of <i>Cladosporium cladosporioides</i> crude extract on <i>Portulaca oleracea</i> total biomass fresh weight	108
8	Effect of <i>Myrothecium verrucaria</i> crude extract on <i>Portulaca oleracea</i> total biomass fresh weight	108
9	Dose response curve of Myrothecium verrucaria FS80 on Convolvulus arvensis	111
10	Dose response curve of Myrothecium verrucaria FS80 on Portulaca oleracea	111
11	Dose response curve of <i>Cladosporium</i> cladosporioides FS73 on <i>Portulaca oleracea</i>	112
12	Dose response curve of <i>Pseudomonas</i> aeruginosa FS15 on <i>Portulaca oleracea</i>	112
13	Neighbour-joining phylogenetic tree showing the relationships between tested isolate and related taxa using MEGA program	115
14	Electropherogram obtained from a <i>Pseudomonas sp.</i> isolate 1 using T-RFLP and ARISA	116
15	Chromatogram of fragmented beak showing expected compound roridin E from <i>Myrothecium verrucaria</i>	127
16	Chromatogram of fragmented beak showing expected compound verrucarin A from <i>Myrothecium verrucaria</i>	128

Table of Abbreviations

Abbreviation	Meaning
ANOVA	Analysis of Variance
EC ₅₀	Half maximal effective concentration
LC-MS/MS	Liquid chromatography-tandem mass spectrometry
HPLC	High performance liquid chromatography
M+H	Molecular ion+ protons
MS	Murashige and Skoog media
M W	Molecular weight
m/z	Mass-to-charge
NA	Nutrient agar medium
PDA	Potato dextrose agar
DCPA	Dichloran-chloramphenicol-peptone agar
CYA	Czapek yeast extract agar
MEA	Malt extract agar
KB	King's B medium
MR&VP	Methyl red test and Vogues- proskauer
MIO	Motility Indole Ornithine medium
TSI	Trible Sugar Iron medium
LSD	Least significant difference
NCBI	National Center for Biotechnology
BLAST	Basic Local Alignment Search Tool
MEGA	Molecular Evolutionary Genetics Analysis
TRFLP	Terminal Restriction Fragment Length Polymorphism
AFLP	Amplified Fragment Polymorphism Technique

ABSTRACT

Microbial weed control represents an alternative ecofriendly solution in suppressing weed plants, reducing weed risks, and overcoming the deleterious effect of synthetic herbicides. In this study two noxious weeds (Portulaca oleracea and Convolvulus arvensis) were chosen to biocontrol as their severity in the newly reclaimed lands of Egypt. Screening of 36 fungal and 40 bacterial isolates culture filtrates against target weeds led to the discovery of four active bacterial isolates (two of them under the genera Pseudomonas and the other two under genera Bacillus and Xanthomonas) and four active fungal isolates (Myrothecium FS80. Cladosporium verrucaria cladosporioides FS73. Aspergillus flavus FS76, and Aspergillus terreus FS67). Through bioassaying ethyl acetate crude extracts of these isolates against seedling stage of *P. oleracea* and *C. arvensis*, three isolates (Pseudomonas sp. isolate 1 FS15, M. verrucaria FS80, and C.

cladosporioides FS73) showed the highest herbicidal activity. The aqueous culture filtrate of *Pseudomonas sp.* isolate 1 FS15 gave 100% reduction in seed germination, shoot and root length of P. oleracea and C. arvensis while, at 40 mg/ml crude extract of the same isolate the reduction percentage in total biomass fresh weight of *P. oleracea* and *C. arvensis* reached 71% and 39%, respectively. The second active isolate which was C. cladosporioides FS73 gave 100% reduction in seed germination, shoot length, and root length of P. oleracea and its extract gave 77.69% reduction in total biomass fresh weight of P. oleracea at the highest concentration (40 mg/ml). The third isolate M. verrucaria FS80 gave 72% reduction in seed germination, 92% reduction in shoot length, and 80% reduction in root length of *P. oleracea* while, in case of *C.* arvensis, it gave 63% significant reduction in root length and 65.3% reduction in shoot length. At 40 mg/ml of M. verrucaria crude extract, the highest reduction percentage in total seedling biomass fresh weight of P. oleracea and C. arvensis reached 84.92 and 58.79%, respectively. Foliar application of 5×10⁷ conidia/ml

of *M. verrucaria* plus 0.2% silwet L-77 in pots containing weeds led to 74% significant reduction in chlorophyll a of *P.oleracea* and 36% reduction in chlorophyll b of C. arvensis. Through identifying *Pseudomonas sp.* isolate 1 by sequencing, it showed 99% similarity with dozens of *Pseudomonas aeruginosa*. LC-MS/MS analysis of the crude extracts of the most active isolates led to the presence of 13 compounds from C. cladosporioides (FS73) which identified as (Mollicelin A, P-methyl benzoic acid, P-hydroxy benzoic acid, Cladosporin, Isocladosporin, Diacetyl cladosporin, Cladosporinone, Cladosporol, Cladosporol C, 3,7-dimethyl-8hydroxy-6-methoxy isochroman, Cinamic acid, Chlorogenic acid, and Viriditoxin), while in case of M. verrucaria (FS80) seven compounds were detected most of them belonging to macrocyclic trichothecene like (Verrucarin-L-acetate, Verrucarin A, Verrucarin M, Verrucarol, Myrothecol A, Roridin E, and Roridin A) and finally 11 compounds were deduced from *P. aeruginosa* (FS15) including (Pyoluteorin, Phenazine-1-carboxylic acid, Phenazine-1-Phenazine-1-carboxamide, sulfate. Pyocyanin, Pyrrolnitrin,