

Evaluation of Management Of Prosthetic Mitral Valve Thrombosis

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiothoracic Surgery

Presented by

Mohamed Abdel Basset Mohamed Abdel Rahman

Faculty of Medicine Ain Shams University, Bachelor of Medicine Bachelor of Surgery (M.B.B.S.)

Under Supervision of

Prof. Dr. Mostafa Abdel-Azim Abdel-Gawad

Professor of Cardiothoracic Surgery Faculty of Medicine -Ain Shams University

Prof. Dr. Ayman Mahmoud Ammar

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Dr. Ahmed Ahmed Fouad Abdelwahab

Lecturer of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mostafa Abdel-Azim**, Professor of Cardiothoracic Surgery Faculty of Medicine -Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ayman Mahmoud Ammar**, Assistant Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Ahmed Found**Abdelwahab, Lecturer of Cardiothoracic Surgery Faculty of

Medicine - Ain Shams University, for his great help, active

participation and guidance.

And a special gratitude and appreciation goes to my kind supportive wife for continuously having my back and raising my spirit.

MOHAMED ABDEL BASSET

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	11
Introduction	1
Aim of the Work	16
Review of Literature	
Prosthetic Heart Valves	18
 Brief History of Artificial Heart Valves 	34
 Heart Valve Fluid Mechanics 	43
 Anticoaglation in Prosthetic Heart Valves 	54
• Warfarin	
 Complications of Mechanical Valve Replacement 	nt88
 Diagnosis of Prosthetic Mitral Valve Thrombos 	is95
 Treatment of Prosthetic Mitral Valve Thrombo 	sis101
 Prevention of Prosthetic Mitral Valve Thrombo 	sis113
Redo Valve Surgery Nowadays	123
 Problems Related to Redo Cardiac Surgery 	132
Patients and Methods	
Results	147
Discussion	189
Summary	203
Conclusion	
Recommendations	208
References	210
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Geometric Profiles of the Four Main of Mechanical Valves	
Table (2):	Comparison table for anticoagulants	55
Table (3):	Factors Used for Shared Decision Mahout Type of Valve Prosthesis	•
Table (4):	Recommendations for Antithro Therapy for Patients With Prosthetic Valves (AHA 2017 Guidelines)	Heart
Table (5):	The target INR values for prosthetic patients on VKA	
Table (6):	Contraindications to Thrombolysis	105
Table (7):	Multiple preoperative risk factors relation to mortality	
Table (8):	NYHA: NewYork Heart Association International Normalized Ratio	•
Table (9):	Multiple preoperative risk factors relation to mortality.(MVR: Mitral Replacement)	Valve
Table (10):	Echocardiographic findings of the patr	
Table (11):	Multiple intraoperative risk factor relation to mortality.	rs and
Table (12):	Multiple postoperative risk factor relation to mortality.	s and
Table (13):		
Table (14):	NYHA classification and Heart r	
	relation to mortality	153
Table (15):	Multiple preoperative risk factors relation to mortality	
Table (16):	Multiple preoperative risk factors percentage of patients	

List of Cables Cont...

Table No.	Title Page 1	No.
Table (17):	Multiple preoperative risk factors and relation to mortality.	159
Table (18):	Preoperative Echocardiography findings of patients	161
Table (19):	Multiple preoperative risk factors and relation to mortality.	162
Table (20):	Other preoperative and intraoperative valvular lesions found in patients echocardiography.	165
Table (21):	Multiple intraoperative and postoperative factors in relation to mortality	168
Table (22):	Multiple postoperative factors in relation to mortality.	169
Table (23):	Multiple preoperative factors in relation to mortality.	172
Table (24):	Multiple preoperative factors in relation to mortality.	175
Table (25):	Multiple preoperative factors in relation to mortality.	176
Table (26):	Multiple preoperative echocardiography factors in relation to mortality	180
Table (27):	Multiple preoperative and intraoperative factors in relation to mortality	181
Table (28):	Multiple preoperative and intraoperative factors in relation to mortality	182
Table (29):	Multiple postoperative factors in relation to mortality.	184
Table (30):	Multiple postoperative risk factors in relation to mortality	187

List of Figures

Fig. No.	Title	Page No.
Figure (1):	St. Jude Medical mechanical heart v	valve20
Figure (2):	Medtronic Hall mitral valve	21
Figure (3):	Starr -Edwards Silastic ball valve m	
Figure (4):	A. Carpentier-Edwards Duralex a bioprosthesis (porcine), B. The Ha M.O. II aortic bioprosthesis (porcin stented pericardial bioprosthesis	ncock ne), C .
Figure (5):	Stentless porcine bioprosthesis	25
Figure (6):	(A) Percutaneous bioprosthesis experiments over a balloon (Edwards Sapien) Self-expandable percuta bioprosthesis (CoreValve)	anded), (B) neous
Figure (7):	On-X mechanical mitral valve prost	
Figure (8):	The top (A) and side (B) photograthe 16-mm ATS-AP valve	ph of
Figure (9):	Carbomedics valve with the flow sur	
Figure (10):	Sorin–Bicarbon valve	
Figure (11):	Evolution of prosthetic Heart Valve years	s over
Figure (12):	Schematic of a bileaflet mechanical valve implanted in the aortic poduring the leakage flow phase	heart osition
Figure (13):	Algorithm fopr evaluating susp warfarin resistance	pected
Figure (14):	(A) Transesophageal echocarding (TEE) showing preoperative paravaleak (PVL). (B) TEE sh postoperative PVL	raphy lvular owing

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (15):	An 84-year-old woman with a history mechanical mitral valve transesoph echocardiography (TEE) images revisibiliard-ball-looking mass A	ageal real a	98
Figure (16):	Preoperative fluoroscopy in demonstrating bi-leaflet mechanitral prosthetic valve with mosterior and fixed anterior leaflets	anical nobile	100
Figure (17):	Intraoperative images		
Figure (18):	Treatment algorithm for patients prosthetic valve thrombosis	with	
Figure (19):	Anticoagulation algorithm for w with valve prosthesis desiring pregn		122
Figure (20):	Percentage of male and female patie	nts	156
Figure (21):	Distribution of patients according Habitat	_	156
Figure (22):	Percentage of Diabetic, hypertensive CKD patients		157
Figure (23):	Percentage of previous preoperative endocarditis preoperative congestive heart fa	and ailure	150
Figure (24):	classification of patients according postoperative counseling.	ng to	
Figure (25):	Percentage of patients having mu preoperative risk factors	ltiple	
Figure (26):	NYHA classification of patients		
Figure (27):	Other preoperative valvular lesions in patients echocardiography		163
Figure (28):	Other preoperative valvular lesions found in patients echocardiography.		163

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (29):	Preoperative Abnormal labs of a patients.	-
Figure (30):	Percentage of associated surgeries of pregnant female patients and feta viability	ıl life
Figure (31):	Fate of pregnancy among pregfemale patients.	
Figure (32):	Cardioplegia type among study patie	ents167
Figure (33):	Cardioplegia temperature among a patients	•
Figure (34):	Multiple postoperative factors in rel to mortality	
Figure (35):	Patients status at discharge	170
Figure (36):	Primary cause of death among mor patients	•
Figure (37):	Age of patients in relation to mortali	ty173
Figure (38):	Patients gender in relation to mortal	ity173
Figure (39):	Multiple preoperative factors in rel to mortality	
Figure (40):	Multiple preoperative factors in rel to mortality	
Figure (41):	NYHA classification of patients relation to mortality	
Figure (42):	Preoperative Anticoagulation of patin relation to mortality	tients
Figure (43):	Counseling of patients after first and relation to mortality	MVR
Figure (44):	Preoperative Heart Rhythm and rel to mortality	ation

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (45):	Multiple preoperative factors in reto mortality.	
Figure (46):	Preoperative Ejection fraction in reto mortality	
Figure (47):	Cardioplegia Temperature in relati	
Figure (48):	Multiple preoperative and intraoperation factors in relation to mortality	
Figure (49):	Post operative ICU hours in relati	
Figure (50):	Post operative ventilation amount relation to mortality.	
Figure (51):	Post operative Cardiac support hour relation to mortality.	
Figure (52):	Post operative blood loss amour relation to mortality.	
Figure (53):	Multiple postoperative risk facto relation to mortality.	
Figure (54):	Postoperative Ejection fraction	in

List of Abbreviations

Abb.	Full term
ACE	Angiotensin-converting enzyme
	Acute coronary syndrome
	Atrial fibrillation
APSAC	Anistreplase (anisoylated plasminogen
	streptokinase activator complex
aPTT	Activated partial thromboplastin time
AT3	Antithrombin III
AVR	Aortic valve replacement
AVR	Aortic valve replacement
CKD	Chronic kidney disease
COR	Class of recommendation
CPB	Cardiopulmonary bypass
DTIs	Direct thrombin inhibitors
ECMO	Extracorporeal membrane oxygenation
ECT	Ecarin clotting time
ED	Emergency departments
FDA	Food and Drug Administration
FFP	Fresh frozen plasma
HIT	Heparin-induced thrombocytopenia
INR	International normalized ratio
IV	Intravenous
LA	Left atrial
LD	Limited data
LMWH	Low Molecular Weight Heparin
LOE	Level of evidence
LV	Left ventricle
MVR	Mitral valve replacement
NACs	Novel anticoagulants
NOPVT	Non-obstructive prosthetic valve thrombosis

NR	Nonrandomized
NYHA	New York Heart Association
OPVT	Obstructive prosthetic valve thrombosis
PCC	Prothrombin complex concentrate
PO	Oral administration
PT	Pro-thrombin time
PT	Pro-thrombin time
PVE	Prosthetic valve endocarditis
PVT	Prosthetic valve thrombosis
R	Randomized
RAO	Right anterior oblique
rfVIIa	Recombinant factor VIIa
SJM	St. Jude Medical
SK	Streptokinase
TA	Tranexamic acid
TAVI	Transcatheter aortic valve implantation
	Transcatheter aortic valve replacement
TE	Thromboembolism
TEE	Transesophageal echocardiography
TT	Thrombin time
TTE	Transthoracic Echocardiography
UFH	Unfractionated heparin
UFH	Unfractionated heparin
UK	Urokinase
VKA	Vitamin K antagonist
VKOR	Vitamin K1, 2,3- epoxide reductase complex
VKORC1	Vitamin K1 2,3-epoxide reductase complex, subunit 1
VTE	Venous thromboembolisms

Abstract

Background: Recent decades showed steady increase in the number of cases referred for redo cardiac surgery, which are associated with increased risk of morbidity and mortality compared to the first-time operations. We aimed to investigate the risk factors for hospital mortality and morbidity in patients who underwent mitral replacements for previous mechanical mitral valve thrombosis.

Methodolgy: Fifty patients underwent the study from Jan. 2014 till Dec. 2017 at Cardiothoracic Department, Ain University. Preoperative, operative, postoperative data were analyzed and evaluated for risk factors affecting hospital mortality and morbidity.

Results: The hospital mortality was 22%. New York Heart Association functional class, pulmonary hypertension, preoperative ejection Fraction, postoperative neurological event, total bypass time, cross clamp postoperative counseling regarding anticoagulation were found to be the most important risk factors for hospital mortality.

Conclusion: Once significant valve dysfunction is first noted, re-operation should be undertaken to minimize operative risk to avoid mortality and post operative morbidities. Also, The best way to avoid morality and morbidity associated with valve thrombosis, is to avoid it happening in the first place. This can occur by improved patient education and follow up, making PT test affordable and following up the results.

Key words: mechanical valve, mitral, redo operation, functional class

Introduction

All foreign bodies (including PVs) implanted within the human cardiovascular system are thrombogenic, potentially implying the need for short-or long-term anticoagulation to prevent thrombosis, which can lead to disabling or fatal stroke. PV thrombosis is a pathological entity characterized by thrombus formation on the prosthetic structures, with subsequent PV dysfunction with or without thromboembolism $(TE)^{(1)}$.

PV dysfunction is a complication of mechanical or biological prostheses, which can cause reduced leaflet motion or impaired leaflet coaptation, leaflet thickening, reduced or increased effective prosthesis orifice area (leading to either stenosis or insufficiency as the primary valve defect, respectively), increased transvalvular gradient or transvalvular regurgitation, with or without development of valve-related symptoms (2).

The risk of PV thrombosis and TE events is higher with MHVs than with BHVs, higher for PVs implanted in the mitral position versus the aortic position and higher for right-sided PVs than left-sided PVs (1).

The annual rate of PV thrombosis with MHVs ranges from 0.1% to 5.7%, with higher rates observed with specific valve types, in the early perioperative period, with MHVs

implanted in the mitral and tricuspid position, and in association with sub therapeutic anticoagulation (3).

Certain degrees of thrombosis are commonly observed in patients with fibrotic pannus ingrowth, prosthesis degeneration, or prosthesis endocarditis (2).

Patients with PV dysfunction with or without thrombosis may present with progressive dyspnea and signs of heart failure or systemic embolization. Alternatively, PV thrombosis may be an incidental finding at the time of echocardiographic followup ⁽⁴⁾.

PV dysfunction should be suspected in patients with symptoms of acute or sub-acute onset associated with an increase in transprosthetic gradient compared with the last echocardiographic follow-up (4).