Prediction of Fetal Lung Maturity in Diabetic Women by Pulmonary Artery Doppler study (Controlled Clinical trial)

Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics and Gynecology**

By

Ebtesam Refaat Ebrahim Ali

M.B.B.Ch

Faculty of Medicine- Ain Shams University 2012 Resident in Embaba General Hospital

Supervised by

Dr. Noha Hamed Rabei

Professor of Obstetrics and Gynecology
Faculty of Medicine – Ain Shams University

Dr. Laila Aly Farid

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of His generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Noha Hamed Rabei** Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Taila Aly Farid** Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

I would like to thank **Dr. Mohamed El-Sherbiny Hamed** consultant radiologist at Obstetrics and Gynecology
ultrasound unit of El Demerdash Hospital for his hard work
in performing the cases and his participating in suggesting and
planning of work.

Contents

Subjects Page	
List of abbreviations	I
List of tables	III
List of figures	IV
Introduction	1
Aim of the work	4
Review of Literature:	
• Chapter I: Doppler Ultrasound in Obstetrics	5
• Chapter II: Diabetes Mellitus with Pregnancy	24
Chapter III: Neonatal Respiratory Distress	47
Subjects & Methods	65
Results	74
Discussion	94
Summary	104
Conclusion	107
Recommendations	108
References	109
Arabic Summary	

List of Abbreviations

ADA: American Diabetes Association

classification

At/Et: The acceleration time/ejection time

AUC : Area under the ROC curve

BMI : Body mass index

BP : Blood pressure

CPAP : Continuous Positive Airway pressure

CS : Cesarean section

DV : Ductus venosus

FBS: Fasting blood sugar

FGR : Fetal growth restriction

FLM : Fetal lung maturity

FPAF : Fetal pulmonary artery flow

FPG: Fasting plasma glucose and

GA : Gestational age

GAD : Glutamic acid decarboxylase

GBS : Group B streptococci

GDM : Gestational diabetes mellitus

IAA : Insulin autoantibodies,

L/S : Lecithin / sphingomyelin

MCA Doppler : Middle cerebral artery Doppler

MCA PSV : Middle cerebral artery peak systolic velocity

MODY : Maturity-onset diabetes of the young

MoM : Multiples of the median

MPA : Main fetal pulmonary artery

MSAF : Meconium-stained amniotic fluid

🕏 List of Aberrations 🗷

NICU: Neonatal Intensive Care Unit

NRDS : Neonatal respiratory distress syndrome

OGTT : Oral glucose tolerance test

PBS : Postprandial blood sugar

PG: Phosphatidyl glycerol

PI : Pulsatility index

PPG : Postprandial plasma glucose

PSV : Peak systolic velocity

RCOG : Royal College of Obstetricians and

Gynecologists

RDS : Respiratory distrss syndrome

RI : Resistance index

ROC : Receiver-operating characteristic

S/D : Systolic/diastolic

SGA : Small for their gestational age

TTTS : Twin-to-twin transfusion syndrome

UA : Umbilical artery

UV : Umbilical vein

List of Tables

Table No.	Title	Page
		No.
Table 1	White Classification	27
Table 2	American Diabetes Association	28
	Classification	
Table 3	Comparison of patients with or without	74
	DM: Numerical variables	
Table 4	Comparison of patients with or without DM	75
	in Doppler indices and Apgar score	
Table 5	Comparison of patients with or without	77
	DM: Categorical variables	
Table 6	Comparison of PA Doppler parameters in	79
	patients with controlled DM who had	
	babies with or without RDS	
Table 7	Comparison of PA Doppler parameters in	81
	patients with non-diabetic group who had	
	babies with or without RDS	
Table 8	Receiver-operating characteristic (ROC)	82
	curve analysis for prediction of RDS in	
	patients with controlled DM using PA	
	At/Et ratio	
Table 9	Secondary outcome measures in both study	84
	groups	
Table 10	Comparison of infants born with or without	86
	RDS: Numerical variables	

🕏 List of Tables 🗷

Table No.	Title	Page No.
Table 11	Receiver-operating characteristic (ROC)	90
	curve analysis for prediction of RDS using	
	PBS, PA PI or PA At/Et ratio	
Table 12	Comparison of patients with or without	92
	RDS: Categorical variables	

List of Figures

Figure No.	Title	Page No.
Figure (1)	Umbilical artery Doppler.	6
Figure (2)	Normal middle cerebral artery Doppler	8
	waveform.	
Figure (3)	(a) Normal ductus venosus in the third	11
	trimester; (b) anabnormal waveform with	
	a wave inversion	
Figure (4)	Second trimester uterine artery Doppler	13
	waveforms. (a) Normal; (b) abnormal.	
Figure (5)	Peak velocity of systolic blood flow in the	15
	middle cerebral artery with advancing	
	gestation.	
Figure (6)	Measurement of the main pulmonary	19
	artery (MPA) acceleration time and	
	ejection time.	
Figure (7)	Guideline for the supervision of	34
	pregnancy with regard to gestational	
	diabetes mellitus (GDM).	
Figure (8)	Complication of diabetes mellitus with	37
	pregnancy	
Figure (9)	Clinical presentation of respiratory	48
	distress in the newborn	
Figure (10)	Chest radiograph of an infant with	50
	transient tachypnea of the newborn.	

🕏 List of Figures 🗷

Figure No.	Title	Page No.
Figure (11)	Chest radiograph of an infant with	52
	respiratory distress syndrome of the	
	newborn.	
Figure (12)	Chest radiograph of an infant with	54
	meconium aspiration syndrome.	
Figure (13)	Mean PA PSV in patients with or without	76
	DM.	
Figure (14)	Mean PA At/Et ratio in babies with or	80
	without RDS.	
Figure (15)	Receiver-operating characteristic (ROC)	83
	curve for prediction of RDS in patients	
	with controlled DM using PA At/Et ratio.	
Figure (16)	Secondary outcome measures in both	84
	study groups.	
Figure (17)	Mean PBS in patients who had babies	87
	with or without RDS.	
Figure (18)	Mean PA PI in babies with or without	88
	RDS.	
Figure (19)	Mean PA At/Et ratio in patients with	89
	controlled DM who had babies with or	
	without RDS.	
Figure (20)	Receiver-operating characteristic (ROC)	91
	curve for prediction of RDS	
Figure (21)	Incidence of RDS in either gender.	93

Introduction

Diabetes mellitus complicates 3–5% of all pregnancies and is a major cause of perinatal morbidity and mortality, as well as maternal morbidity (**Ahmed et. al., 2015**).

Neonatal respiratory distress syndrome (RDS) refers to respiratory compromise presenting at or shortly after delivery related to a deficiency of pulmonary surfactant, a naturally occurring phospholipid required to decrease surface tension within the alveoli to prevent alveolar collapse (Azpurua et al., 2010).

Risk of neonatal RDS decreases as gestational age increases, because the lungs are the final fetal organs to functionally mature. Therefore, neonatal RDS is often considered to be a disease of premature newborns, although it does not exclusively occur after preterm deliveries (Laban et al., 2015).

Preterm deliveries can follow spontaneous onset of labor with or without preterm rupture of membranes; however, preterm deliveries are, sometimes, providerinitiated. Deliveries can be unintentionally preterm because of gestational age (GA) error as commonly seen in women delivered by elective Cesarean section (CS) (Moety et al., 2015).

In several conditions, obstetric care providers, decide to terminate pregnancy before spontaneous delivery is begun. One of the most concerns for determining the optimal time for pregnancy termination, in high risk pregnancies, is, detecting those fetuses which are at risk for RDS. Several methods are described to evaluate fetal lung maturity (FLM) such as measurement of the lecithin / sphingomyelin (L/S) ratio, presence or absence of phosphatidyl glycerol (PG), fluorescent polarization test, foam stability or shake test and lamellar body count in amniotic fluid which requires amniocentesis, an invasive procedure, and associated with a small but real risk to pregnancy, including preterm labor, premature rupture of abruption plancenta, and fetomaternal membrane, hemorrhage, in 0.7% of cases and (rarely) fetal or maternal mortality (Fariba et al., 2016).

For these reasons, noninvasive methods using ultrasound to assess fetal lung maturity have long been sought for, but efforts to date (such as measurements of lung volumes, gestation age, epiphysis centers, placental grading, and estimated fetal weight) have been

unsuccessful in clinical practice. As the lungs develop throughout gestation, so does the pulmonary vasculature, where both the absolute number of pulmonary arteries rises and the total amount of smooth muscular tissue increases, and the pulmonary arterial vascular resistance decreases slightly, leading to a gradual increase in pulmonary blood flow (Guan et al., 2015).

Previous studies have shown predictable changes of fetal lung echogenicity during pregnancy (**Tekesin et al.**, **2004**) and fetal pulmonary artery Doppler waveforms in hypoplastic fetal lungs (**Chaoui et al.**, **1998**, **Fuke et al.**, **2003**) and progressive increase in ratio correlate with advancing gestational age.

Recent studies have demonstrated that Acceleration /Ejection time ratio in fetal main pulmonary artery can predict fetal lung maturity as measured by biochemical tests of amniocentesis (Azpurua et al., 2010, Schenone et al., 2014) or by comparing with clinical outcome of delivered fetuses (Kim et al., 2013, Guan et al., 2014).

Aim of the Work

The aim of the work is to assess the accuracy of fetal pulmonary artery Doppler in prediction of fetal lung maturity in diabetic pregnant women.

Research Question:

In diabetic pregnant women, does fetal pulmonary artery Doppler predict lung maturity accurately?

Research Hypothesis:

In diabetic pregnant women, Fetal pulmonary artery Doppler may predict lung maturity accurately.

Outcome measures:

1. Primary outcome measure:

Prediction of respiratory distress syndrome by pulmonary artery Doppler in diabetic pregnant women.

2. Secondary outcome measure:

Fetuses which need Neonatal Intensive Care Unit (NICU) admission, application of Continuous Positive Airway pressure (CPAP), Nasal CPAP, administration of exogenous surfactant therapy or endotracheal tube insertion (mechanical ventilation).

Subjects & Methods

Study Setting:

Faculty of Medicine, Ain Shams University Maternity Hospital.

Expected Duration:

Six months from September 2017 to March 2018.

Study design:

Controlled Clinical trial (prospective study).

Study Population:

At least 80 pregnant women planned to undergo elective uncomplicated cesarean section.

Sample size:

This study will include 80 women preparing to do fetal pulmonary artery Doppler ultrasound and designed as the following 2 groups:

(Case group): include 40 pregnant women with controlled diabetes mellitus.

(Control group): include 40 pregnant women not complicated with diabetes mellitus.

Sample size justification:

Assuming Null hypothesis that there is no correlation between pulmonary artery peak systolic velocity (PSV) and Respiratory Distress Syndrome (RDS) and the alternative hypothesis is the presence of correlation pulmonary artery PSV and RDS from the previous study the effect size was found to be 0,327 and setting a (two sided) test at 0,05 and 0,3 at 0,1 the sample size was found to be 80 patients to be divided into 2 groups according to (GAFA Moety et al., 2015)

Inclusion Criteria:

- 1- Gestational age is above 37 weeks.
- 2- Singleton pregnancy.

Exclusion Criteria:

- 1- Pregnant females less than 37 weeks of gestational age.
- 2- Multiple pregnancy.
- 3- Uncertain gestational age.
- 4- History of cardiac or hypertension disease.
- 5- Obstetric hemorrhage as antepartum hemorrhage.
- 6- Intrauterine growth retardation.