

Evaluation of serum sclerostin level and its correlation with valvular calcification in haemodialysis patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

$\mathcal{B}_{\mathcal{Y}}$ Asmaa Mosallam Rasheed $_{M.B,B.Ch.}$

Under Supervision of **Prof. Dr. Sabry Abdel Aziz Gohar**

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Hayam Ahmed Hebah

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Abdel Rahman Nabil Kheidr

Assistant Professor of Internal Medicine Faculty of Medicine– Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Sabry Abdel Aziz Gohar,**Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Hayam Ahmed Hebah**, Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Abdel Rahman Mabil Kheidr**, Lecturer of Internal Medicine Faculty of Medicine—

Ain Shams University, for his great help, active participation and guidance.

Asmaa Mosallam Rasheed

Dedication

Words can never express my sincere thanks to My Family and My Husband, Dr. Yasser, for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

List of Contents

Title	Page No.
List of Tables	6
List of Figures	7
List of Abbreviations	9
Introduction	1
Aim of the Work	16
Review of Literature	
 Cardiovascular Diseases in Haemodialysis 1 	Patients17
 Calcification in Chronic Kidney Disease 	35
Sclerostin and Wnt Pathways	67
Patients and Methods	77
Results	84
Discussion	92
Summary	98
Conclusion	100
Recommendations	101
References	102
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Summary of differences between and medial calcification	
Table (2):	Vascular Calcification promoters inhibitors.	
Table (3):	Description of the sample age and do of dialysis	
Table (4):	Description of the sample sex and viro	ology85
Table (5):	Description of the sample lab data	85
Table (6):	Description of the sample valve calciff	ication 86
Table (7):	Comparison between those with and value calcification regarding sclevel.	erostin
Table (8):	Comparison between those with and value calcification reg	garding
Table (9):	Comparison between those with and valve calcification regarding sclerosting	
Table (10):	Comparison between males and fregarding sclerostin level	
Table (11):	Comparison between those with positing negative virology regarding sclerosting	
Table (12):	Correlation between sclerostin lev	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Cardiovascular mortality defined by due to cardiac arrest, myocardial inf arrhythmias, atherosclerotic heart and pulmonary edema	arction, disease,
Figure (2):	Traditional and non-traditional C factors in CKD patients	CV risk
Figure (3):	Phenotypic conversion of VSMC contractile form to a synthetic	from a
Figure (4):	Role of extracellular vesicles in VC	
Figure (5):	miRs initiate VSMC differentiate calcifying cells which express the ost transcription factors, Runx2, and Oster	teoblast erix and
Figure (6):	downregulate VSMC contractile protest Inorganic phosphate (Pi) which enticell through Pit-1 increases osteoger expression and inhibits smooth must gene expression, as a result, the second MV, ALP, and Ca+2 binding	ters the nic gene scle cell retion of
	increases	50
Figure (7):	FGF-23 mechanism to decrease seru	
Figure (8):	VSMCs transformed to synthetic cel the uremic environment	ll under
Figure (9):	Regulation of vascular calcificat inorganic pyrophosphate.	ion by
Figure (10):	The role of vitamin D in VC process	
•	Wnt signaling pathways	
Figure (12):	There are many Wnt inhibitors	
Figure (13):	Valve Calcification	
Figure (14):	Comparison between those wit without aortic valve calcification re sclerostin level. It shows no correlation	garding

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (15):	Comparison between the	ose with and
3	without mitral valve calcific sclerostin level. It shows no	cation regarding
Figure (16):	Comparison between the without valve calcificat	ose with and
	sclerostin level.it shows no c	orrelation89

List of Abbreviations

Full term

Abb.

γ-carboxylation ... Gamma Carboxylation ACR... Albumin/Creatinine Ratio ADMA... Asymmetrical Di Methy Arginine AF ... Atrial Fibrillation AGEs. Advanced Glycation end Products ALP. Alkaline Phosphatase AMI. Acute Myocardial Infarction ARBs. Angiotensin II Receptor Blockers ATP... Adenosine Triphosphate AV ... Aortic Valve A-V ... Arterio-Venous AVC ... Aortic Valve Calcification BMD ... Bone Mineral Density BMP ... Bone Morphogenetic Protein

CABG...... Coronary Artery Bypass Graft Surgery

Cbfal Core Binding Factor Al CCB...... Calciprotein Particles

CUE Congogitive Heart Failur

CHFCongestive Heart Failure

CIMT......Carotid Intima-Media Thickness

CK-1..... Casein Kinase 1

CKD Chronic Kidney Disease

CV Cardiovascular

CVD Cardiovascular Disease

DKK1..... Dickkopf-Related Protein 1

DM Diabetes Mellitus

List of Abbreviations Cont...

Full term Abb. ECM..... Extracellular Matrix EF Ejection Fraction ELISA..... Enzyme-Linked Immunosorbent Assay ePPi..... Extracellular Pyrophosphate ER Endoplasmic Reticulum ESA..... Erythropoietin Stimulating Agent ESRD End Stage Renal Disease EV Extracellular Vesicles Fet-A..... Fetuin - A FGF-23..... Fibroblast Growth Factor-23 FMC Fetuin-Mineral Complex FSAP..... Factor VII-Activating Protease Fz Frizzled GFR......Glomerular Filtration Rate GIT..... Gastrointestinal Tract GN......Glomerulonephritis GSK3..... Glycogen Synthase Kinase 3 HD..... Hemodialysis HDL High-density Lipoprotein HOPE..... Heart Outcomes Prevention Evaluation HTN Hypertension IL-1 Interleukinl IL-6 Interleukin 6 iPTH Intact Parathyroid Hormone IU/week..... International Unit Per Week JUPITER..... Justification for the Use of statins in Prevention, an Intervention Trial Evaluating Rosuvastatin kDa Kilodalton

Full term Abb. KDIGO...... Kidney Disease Improving Global Outcomes Kg..... Kilogram KRM..... Kremen-1 Kt/v K - Dialyzer Clearance of Urea. T - Dialysis Time. V - Volume of Distribution of Urea LDL.....Low-Density Lipoprotein LDL-c.....Low-Density Lipoprotein-Cholesterol LRP.....Low-Density Lipoprotein Receptor-Related Protein LVH Left Ventricular Hypertrophy MBD...... Mineral and Bone Disorder MGP..... Matrix Gla Protein MHD Maintenance Hemodialysis miRs..... Micro-RNAs MM...... Multiple Myeloma mRNA...... Messenger Ribonucleic Acid MSX2 Msh Homeobox 2 MV Matrix Vesicles MVC..... Mitral Valve Calcification MVSC...... Multipotent Vascular Stem Cells NADPH...... Nicotinamide Adenine Dinucleotide Phosphate NO...... Nitric oxide OPG Osteoprotegerin OPN Osteopontin PCI.....Percutaneous Coronary Intervention PCK......Polycystic Kidney Disease PCT.....Proximal Convoluted Tubules PD Peritoneal Dialysis

List of Abbreviations Cont...

List of Abbreviations Cont...

Full term Abb. PET scan..... Positron Emission Tomography SCAN Pi..... Inorganic Phosphate PiT-1 Na-Dependent Phosphate Co-Transporter PO4 Phosphate PPi Pyrophosphate PTH..... Parathyroid Hormone PTH1R Parathyroid Hormone Receptor P-value...... Probability Value PVD..... Peripheral Vascular Disease RAGE.....Receptor for Advanced Glycation End-**Products** RANK Receptor Activator of Nuclear Factor Kb RANKL Receptor Activator of Nuclear Factor Kb Ligand RAS Renin-Angiotensin System RUNX2 Runt-Related Transcription Factor 2 S.....Serum SCD......Sudden Cardiac Death Scl Sclerostin SD Standard Deviation SKD..... Stone Kidney Disease SM.....Smooth Muscle SMC Smooth Muscle Cell SOST gene Sclerostin Gene SPSS Statistical Package for the Social Sciences Streptavidin-HRP. Streptavidin-Horseradish Peroxidase TIA...... Transient Ischemic Attack TNAP Tissue Nonspecific Alkaline Phosphatase

List of Abbreviations Cont...

Abb.	Full term
TNF	Tumor Necrosis Factor
TRAIL	TNF-Related Apoptosis-Inducing Ligand
TRPV6	Transient Receptor Potential Cation Channel, Subfamily V, Member 6
UF	Ultrafiltration
US	Ultrasound
USRDS	United States Renal Data System
VC	Vascular Calcification
VDRAs	Vit-D Receptor Agonists
Vit-D	Vitamin D
Vit-K	Vitamin K
VKA	Vitamin K Antagonists
VSMC	Vascular Smooth Muscle Cell
Wnt	Wingless-Type Mouse Mammary Tumor Virus Integration Site
β-Catenin	Beta Catenin

Introduction

nd Stage Renal Disease (ESRD) patients have a well-recognized increased risk of cardiovascular disease that begins early in the course of chronic kidney disease (CKD) and results in 10-fold or higher cardiovascular mortality rates after the start of renal replacement therapy (*Sarnak*, 2003).

Cardiovascular diseases remain the leading cause of morbidity and mortality in patients of chronic kidney disease, especially in those on dialysis therapy. The risk of cardiovascular death is particularly high 10–20 times greater than in the general population (*Pencak et al.*, 2013).

Vascular calcification (VC) and arterial stiffness have been identified as independent predictors of all-cause and cardiovascular mortality in stage 5 chronic kidney disease (Sigrist et al., 2007).

The mechanisms of uremic vascular calcification are multifactorial. Beyond the bone and mineral disturbances, the activation of the Wnt/ β -catenin signaling pathway was found to be associated with vascular calcification and may be more profound in uremic conditions (*Chih-Yu et al.*, 2015).

Higher serum sclerostin levels are found in haemodialysis patients and are associated with higher bone mineral diseases (*Guillaume et al.*, 2016).

Sclerostin is secreted mainly by osteocytes and regulates osteoblast activity. Its concentration is high in prevalent haemodialysis patients and positively associated with age and negatively with parathyroid hormone (Balemans et al., 2014).

Plasma concentration of sclerostin increases haemodialysis patients with secondary hyperparathyroidism treated with cinacalcet. This effect is related to decrease of serum PTH concentration (Kuczera et al., 2016).