Evaluation of Addition of Silver Nano Particles to Common Root Canal Irrigants on Root Canal Dentine, Antibacterial Efficacy and Cytotoxicity

Thesis

Submitted to the Faculty of Dentistry,

Ain Shams University

For

Partial Fulfillment of Requirements of the Doctoral degree in Endodontics

By

Dr. Ahmed Hussein AbuElEzz

B.D.S. Misr International University

بسم الله الرحمن الرحيم

"قالوا سبحانك لا علم لنا إلا ما

علمتنا

إنك أنت العليم الحكيم"

صدق الله العظيم آيه 32 من سورة البقرة

Supervisors

Prof. Dr. Salma Hassan El Ashrey

Professor of Endodontics, Endodontic department,
Faculty of Dentistry, Ain Shams University

Dr. Ahmed Mostafa Ghobashy

Associate Professor of Endodontics, Endodontic department, Faculty of Dentistry, Misr

International University

Acknowledgement

I would like to express my deep gratitude to *Professor Salma El Ashry*, Professor of Endodontics, Faculty of Dentistry, Ain Shams University for her kind guidance, sincerity, extraordinary supervision and unlimited support throughout my academic and clinical work.

I would like to thank *Assoc. Professor Ahmed Mostafa Ghobashy*, Lecturer in Endodontics, Faculty of Dentistry, Misr International University for his excellent advice, invaluable stimulating guidance and help during this study.

I would like to thank *Professor Ali Zaki*, Professor of Microbiology, Faculty of Medicine, Ain Shams University for his guidance throughout parts of the study.

I would like to thank *Professor Ihab Hassanein*, Chairman of endodontic department, and all members of Endodontic department, Faculty of Dentistry, Ain Shams University for their valuable help and cooperation.

I would like to thank *all members of the endodontic department*, Faculty of Dentistry, **Misr International University** for their support.

Dedication

To my great Father

To my Dearest mother

To my lovely wife and daughters

List of contents

List of tables		ii
List of figures		iv
Introduction		1
Review	of literature	4
I.	Bond Strength	5
II.	Permeability	12
III.	Smear layer removal	18
IV.	Dentine wettability	26
V.	Minimal inhibitory concentration and Bacterial viability test	33
VI.	Cytotoxicity	55
Aim of the study		63
Materials and Methods		64
Results		96
Discuss	ion	128
Summery and conclusion		141
References		143
Arabic S	Summery	

List of Tables

Table (1)	Materials used in part (A) in the study	64
Table (2)	Materials used in part (B&C) in the study	65
Table (3)	Group classification	69
Table (4)	The mean, standard deviation (SD) values and	99
	results of one-way ANOVA test for comparison	
	between push-out bond strength (MPa) in the	
	different groups	
Table (5)	The median, Inter-Quartile Range (IQR) values	101
	and results of Kruskal-Wallis test for comparison	
	between dye penetration in different groups	
Table (6)	The mean, standard deviation (SD) values and	108
	results of one-way ANOVA test for comparison	
	between smear layer area in different groups	

Table (7)	The mean, standard deviation (SD) values and	114
	results of one-way ANOVA test for comparison	
	between contact angle in different groups	
Table (8)	Minimal Inhibitory Concentration dilutions of	116
	different irrigants against E. Faecalis	
Table (9)	The mean, standard deviation (SD) values and	118
	results of one-way ANOVA test for comparison	
	between percentage of dead bacteria in the	
	different groups	
Table	The mean, standard deviation (SD) values, cell	125
(10)	vibility and IC50% for the cytotoxicity of	
	irrigants on BHK cells	
Table	The median, Inter-Quartile Range (IQR) values	127
(11)	and results of Kruskal-Wallis test for comparison	
	between viability % in the different groups	

List of Figures

Fig (1)	Dispersion of Nano-silver particles	86
Fig (2)	Precision saw cutting a 2 mm thickness root section	86
Fig (3)	Digital caliper measuring slice thickness	87
Fig (4)	Samples were examined using surgical microscope	87
	with magnification of 25x	
Fig (5)	Computer-controlled material testing machine	88
Fig (6)	Specimens mounted on glass slides	88
Fig (7)	Confocal laser scanning microscope	89
Fig (8)	Measuring the total surface area of opened dentinal	89
	tubules	
Fig (9)	Measuring contact angle for each irrigant drop	90
Fig (10)	Longitudinal dentine halves	90
Fig (11)	Drop of irrigant on dentine surface	91
Fig (12)	The mean of the angles of each drop represent the	91
	contact angle of the drop	
Fig (13)	Microtittre plate	92
Fig (14)	Dentine blocks of 4 x 4 mm and 1 mm thickness	92
Fig (15)	Dentine specimens incubated in Oxoid BHI broth	93
Fig (16)	Oxoid Brain Heart Infusion	93
Fig (17)	Suspensions of cells placed in wells	94

Fig (18)	Dilution of irrigants with pyrogen free sterile distilled	94
	water	
Fig (19)	Mean bond strength values, standard deviation and	99
	results for push-out test	
Fig (20)	Median, IQR values and results of permeability test	101
Fig (21)	Penetration of nano-silver irrigant under CLSM	102
Fig (22)	Penetration of nano-silver + CHX irrigant under	102
	CLSM	
Fig (23)	Penetration of nano-silver + EDTA irrigant under	103
	CLSM	
Fig(24)	Penetration of CHX irrigant under CLSM	103
Fig (25)	Penetration of EDTA irrigant under CLSM	104
Fig (26)	Penetration of NaOCl irrigant under CLSM	104
Fig (27)	Penetration of Distilled water irrigant under CLSM	105
Fig (28)	Penetration of nano-silver + NaOCl irrigant under	105
	CLSM	
Fig (29)	Smear layer histogram	108
Fig (30)	Smear layer treated with nano-silver irrigant	109
Fig (31)	Smear layer treated with CHX irrigant	109
Fig (32)	Smear layer treated with nano-silver + CHX irrigant	110
Fig (33)	smear layer treated with NaOCl irrigant	110

smear layer treated with nano-silver + NaOCl irrigant	111
smear layer treated with distilled water irrigant	111
smear layer treated with EDTA irrigant	112
smear layer treated with nano-silver + EDTA irrigant	112
Bar chart representing mean and standard deviation	115
values for contact angle in the different groups	
The mean, standard deviation values, and results of	118
antibacterial effect	
Antibacterial effect of Nano-silver particles	119
Antibacterial effect of NaOCl	119
Antibacterial effect of Nano-silver + CHX	120
Antibacterial effect of Nano-silver + EDTA	120
Antibacterial effect of Nano-silver particles + NaOCl	121
Antibacterial effect of CHX	121
Antibacterial effect of EDTA	122
Antibacterial effect of distilled water	122
Box plot representing median and IQR values for	127
viability percentage in the different groups	
	smear layer treated with distilled water irrigant smear layer treated with EDTA irrigant smear layer treated with nano-silver + EDTA irrigant Bar chart representing mean and standard deviation values for contact angle in the different groups The mean, standard deviation values, and results of antibacterial effect Antibacterial effect of Nano-silver particles Antibacterial effect of Nano-silver + CHX Antibacterial effect of Nano-silver particles + NaOCl Antibacterial effect of CHX Antibacterial effect of CHX Antibacterial effect of EDTA Antibacterial effect of distilled water Box plot representing median and IQR values for

Microbial populations contribute to many infectious diseases such as pulpal and periradicular pathosis. From the ecological prospective, root canal could be considered as a highly controlled environment with a limited number of niches. For bacteria to endure endodontic treatment they must resist intracanal disinfection procedures and adapt to the changes in the environment. For microorganisms to survive in biofilm, they should undergo physiological and morphological modifications to adapt to the environment. This adaptation requires that a large set of micro genes must be regulated to be able to optimize phenotypic properties for each environment.

Enterococcus Faecalis is considered the most predominant and resisting microorganism that could be detected in root canals of teeth with persistent periradicular lesions. E. Faecalis is considered a hardy, virulent microbe due to its lytic enzymes. Cytolysin, aggregation substance, pheromones and lipoteiclioc acid. It was shown that they could invade dentinal tubules and remain viable for a prolonged period, adhere and resist intracanal disinfectants.

Sodium hypochlorite is the most commonly recommended root canal irrigant, as when it interacts with micro-organisms and organic tissue causes chloramination, amino acid neutralization and saponification reaction leading to tissue dissolving and antibacterial effect. On the other hand, the antimicrobial effect of sodium hypochlorite can be inactivated by dentin, exudates from the periapical area, and have the disadvantage of toxicity and risk of tissue destruction. Chlorohexidine gluconate is a popular anti-microbial agent. It has cationic molecular component that attached to the negative charge of a cell membrane and causes cell lysis, but not capable of dissolving pulp tissue debris.

The primary adhesion of bacteria depends on surface characteristics of dentine as well as specific adhesion properties of bacteria. Therefore, smear layer formed during canal instrumentation might have a role in bacterial adhesion. It has been reported that removal of smear layer decreased the adhesion of E. Faecalis. On contrary, bacterial invasion of dentinal tubules might be responsible for persistent root canal infection.

Nano technology has been an over expanding area of research. Chemically the nano particles (NPs) are very diverse. The synthesis of silver nano particles (AgNPs) has attracted a great interest. They have been applied owing to their broad spectrum bactericidal and virucidal properties. AgNps show antibacterial mechanisms through adherence multiple bacterial cell wall. Mono-valent penetration into silver compounds, especially silver nitrate have been used. Many studies highlighted the importance of the anti-bacterial efficacy of nanosilver particles against E. Faecalis biofilms. However, we lack information on the incorporation of nano-silver particles in available root canal irrigants. Silver should be used with caution because of its toxicity is concentration dependent. The small particle size of AgNPs as well as its high surface area per unit mass, chemical composition and surface property effects might be a factor in NP-induced toxicity and non-specific oxidative damage. Therefore, it is important to study the efficacy of nano particle containing irrigant in eliminating E faecalis as well as the response of rat connective tissue to AgNps compared to other irrigants.

Therefore, this study aimed to evaluate the effect of nano-silver particles as an irrigant as well as its addition to commonly used irrigants on root canal dentine, antibacterial effect and cytotoxicity.

I- Evaluation of nano-silver particles on root canal dentine:

Successful root canal therapy aimed at through chemo mechanical preparation and three dimensional obturation with complete seal of root canal system. Mechanical preparation resulted in formation of smear layer which might plug dentinal tubules impairing proper adhesion of sealer with canal wall. Therefore, chemical removal or modification of smear layer is of value to achieve proper bonding of sealer to canal wall. Many irrigants are available which could be used. The introduction of nano-particles with their novel properties in dental field might be beneficial in that aspect. Smear layer could hinder root canal irrigants and sealers from penetration into dentine. This in turn will increase the risk of bacterial infection. Therefore, removal of smear layer can increase permeability of dentine for proper disinfection and adaptation of root canal sealer.

Wettability of root canal dentine is one of the most important physical properties that affect either irrigant penetration into dentine, sealer adaptation or adhesion of bacterial biofilm, NaOCl is considered the most commonly used irrigant, also CHX is another widely used one. EDTA as a lubricant during mechanical preparation and smear layer removal also influence physical properties of dentine.