

Study of High Gamma Glutamyl Transferase Cholestasis In Egyptian Children

Thesis

Submitted For Partial Fulfillment of M.Sc.

Degree In Paediatrics

By

Hani Abd-Elsalam Hasan Khedr

M.B.B.Ch, Ain shams university (2010)

Under Supervision Of

Prof. Tawheda Yassin Abdel-Ghaffar

Professor of Paediatric Hepatology Faculty of Medicine - Ain Shams University

Prof. Solaf Mohamed Elsayed

Professor of Medical Genetics Faculty of Medicine - Ain Shams University

Dr. Asmaa Wafeeq Abdel-Aziz

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Yassin Abdel-Ghaffar** Charity Center for Liver Disease and Research, for giving me the chance to obtain the required data about the patients and follow up them.

I'd like to express my respectful thanks and profound gratitude to **Prof. Tawheda Yassin Abdel-Ghaffar,**Professor of Paediatric Hepatology Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Solaf Mohamed Elsayed**, Professor of Medical Genetics Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Asmaa Wafeeq Abdel- Aziz**, Lecturer of Pediatrics Faculty of Medicine - Ain Shams
University, for her great help, active participation and guidance.

Hani Khedr

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	9
Introduction	1
Aim of the Work	14
Review of Literature	
Gamma-Glutamyl Transferases	15
Cholestatic Liver Disease in Children	21
 Progressive Familial Intrahepatic Cholestasis . 	41
Alagille Syndrome	63
Subjects and Methods	83
Results	90
Discussion	124
Limitations of the Study	137
Summary	138
Conclusion	142
Recommendations	143
References	144
Arabic Summary	

List of Tables

Table No.	Title Page No.	
Table (1):	Mechanisms of Cholestasis of Sepsis38	8
Table (2):	Characteristics of progressive familial	
	intrahepatic cholestasis4	5
Table (3):	Laboratory parameters aiding in the diagnosis of PFIC4	7
Table (4):	Suggested daily vitamin and mineral supplementation5	4
Table (5):	Summary of molecular genetic testing used in ALGS.	5
Table (6):	Classic Criteria, based on five body	
	systems, for a diagnosis of Alagille syndrome68	8
Table (7):	Diagnosis of the studied patients9	1
Table (8):	Demographic data of the studied patients9	1
Table (9):	Anthropometric measures of the studied	
	group Weight for Age Percentiles92	
Table (10):	Height /Length for Age percentiles93	3
Table (11):	Body mass index for age percentiles94	4
Table (12):	Clinical picture at presentation and last follow up among the studied patients98	5
Table (13):	Investigations of PFIC3 patients at	
	presentation and at last follow up98	8
Table (14):	Investigations of Alagille patients at	
	presentation and at last follow up 10	1
Table (15):	Comparison between investigations of PFIC3 patients and Alagille syndrome	
	patients and Alagine syndrome patients at presentation and last follow up 10-	4

List of Cables Cont...

Table No.	Title Page	e No.
Table (16):	Comparison between investigations of PFIC3 patients and Alagille syndrome patients at last follow up	
Table (17):	Ultrasonography of PFIC3 patients	106
Table (18):	Ultrasonography of the Alagille patients	107
Table (19):	Other investigations among the studied patients at presentation and at last follow up	
Table (20):	Liver biopsy among the studied patients at presentation.	
Table (21):	Treatment of the studied patients (Both PFIC3 and alagille patients)	
Table (22):	CHILD score of the studied patients at presentation and last follow up	
Table (23):	Summary of the outcome of the studied group	
Table (24):	Comparison between the CHILD score at last follow up and the below mentioned parameters at presentation for PFIC3 patients.	
Table (25):	Univariate logistic regression analysis for predictors of poor outcome in PFIC3 patients	
Table (26):	•	
Table (27):	Univariate logistic regression analysis for predictors of poor outcome in Alagille patients.	

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Triangular-cord-sign of BA	26
Figure (2):	Alagille syndrome	
Figure (2):	Diagnostic algorithm for neonata	
rigure (5):	cholestasis	
Figure (4):	Etiopathogenesis of PFIC	
Figure (5):	Histomorphological pointers to suspect a case of progressive familial intrahepatic	a c
Figure (6).		
Figure (6):	Biliary drainage procedures	
Figure (7):	Posterior embryotoxon	
Figure (8):	Butterfly vertebrae seen in the thoraciand upper lumbar regions	
Figure (9):	The hands of the child	
Figure (10):	a) Characteristic facial features seen in	
(_=0,1	ALGS. b) Face profile figure, c) Intra-ora frontal figure	1
Figure (11):	Flow diagram of genetic investigations and management for suspected ALGS patients	3
Figure (12):	Relation between the outcome at last follow up and S. total bilirubin at presentation in PFIC3 Patients	t t
Figure (13):	Relation between the outcome at lass follow up and S. direct bilirubin in PFICS Patients.	t 3
Figure (14):	Relation between the outcome at last follow up and S.GGT at presentation in PFIC3 Patients.	t 1
Figure (15):	Relation between the outcome at lass follow up and S.albumin at presentation in PFIC3 Patients	ı

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	Relation between the outofollow up and INR at pro	esentation in
Figure (17):	Alagille patients Relation between the outofollow up and	come at last

List of Abbreviations

Abb.	Full term
<i>3βHSD</i>	3β-hydroxy-C27-steroid oxidoreductase
•	(dehydrogenase / isomerase) deficiency
$5\beta RD$	5β -reductase
A1ATD	Alpha1-antitrypsin deficiency
<i>ABE</i>	Acute bilirubin encephalopathy
ALGS	Alagille syndrome
<i>ALP</i>	Alkaline phosphatase
<i>ALT</i>	Alanine aminotransferase
ARC	Arthrogryposis- renal dysfunction cholestasis
<i>ARPKD</i>	Autosomal recessive polycystic kidney disease
AS	Alagille syndrome
ASD	Atrial septal defect
AST	Aspartate aminotransferase
<i>BA</i>	Biliary atresia
BPA st	Branch pulmonary artery stenosis
BRIC	Benign Recurrent Intrahepatic Cholestasis
BSEP	Bile salt export pump
<i>CA</i>	Cholic acid
<i>CB</i>	Conjugated bilirubin
CDCA	Chenodeoxycholic acid
CFR	Case fatality rate
CLS	Cholestasis-lymphedema syndrome
<i>CMV</i>	Congenital cytomegalovirus
DB	Direct bilirubin
ESLD	End stage liver disease
FAB-MS	Fast atom bombardment-mass spectrometry
	Fluorescence in situ hybridization
GC-MS	Gas chromatography-mass spectrometry

iroduction

List of Abbreviations Cont...

Abb.	Full term
<i>GGT</i>	Gamma glutamyl transferase
Hb	
	Hepatobiliary scintigraphy
	Hepatocellular carcinoma
<i>IB</i>	
<i>IL-6</i>	V 2
KCs	
	Liver transplantation
MARS	Molecular Adsorbent Recirculating System
MDR3	Multidrug resistance 3 protein
<i>NAIC</i>	North American Indian Childhood Cirrhosis
<i>NBD</i>	Nasobiliary drainage
<i>NC</i>	Neonatal cholestasis
<i>NICU</i>	Neonatal ICU
<i>NNJ</i>	Neonatal jaundice
<i>NO</i>	Nitric oxide
<i>NP-C</i>	Niemann-Pick disease
<i>PEBD</i>	Partial external biliary drainage
<i>PFIC</i>	Progressive Familial Intrahepatic Cholestasis
<i>pGp</i>	p-glycoprotein
<i>PIBD</i>	Partial internal biliary drainage
<i>PSC</i>	Primary sclerosing cholangitis
PV	Portal vein
PVS	Pulmonary valve stenosis
<i>RDA</i>	Recommended daily allowance
<i>RES</i>	Reticuloendothelial system
<i>SI</i>	Suspicion Index
<i>SNHL</i>	Sensorineural hearing loss

List of Abbreviations Cont...

INTRODUCTION

uring early life, failure of secretion of both bile and conjugated bilirubin is the commonest manifestation of liver dysfunction. Jaundice is frequently a feature of early rather than late advanced liver disease as is seen in older children (Bezerra and Balistreri, 2001).

Cholestasis is defined as a decrease in bile flow due to impaired secretion by hepatocytes or due to obstruction of bile flow through intra or extrahepatic bile ducts (*Nazer*, 2014). It is also defined biochemically as a direct bilirubin greater than 2 mg/dl or more than 20% of the total bilirubin (Venigalla and Gourley, 2004). Hyperbilirubinemia characterized by jaundice, acholic stool, dark urine and hepatomegaly must always be considered as a pathological state (Suchy, 2004).

Gamma glutamyl transferase (GGT) is an enzyme found in cell membranes of many tissues mainly in the liver, in both the hepatocytes and bile ducts. It is also found in the intestine, spleen, heart, brain, and seminal vesicles, but the liver is considered the source of normal enzyme activity. GGT levels are increased in patients with liver diseases in general, including cholestasis (Davit-Spraul et al., 2010).

The differential diagnosis of high GGT in the category of infantile cholestasis is extensive and can be classified based on the anatomic location of pathology into extrahepatic and

intrahepatic aetiologies. Biliary atresia, choledochal cyst, bile duct stenosis, primary sclerosing cholangitis, choledochal pancreatico- ductal anomaly and neoplasm are examples of extrahepatic causes while, idiopathic neonatal hepatitis, progressive familial intrahepatic cholestasis type 3, Alagille syndrome are common intrahepatic etiologies (Fischler et al., 2007; Nguyen et al., 2014).

In a recent study the predictive parameters of unfavorable outcome of intrahepatic cholestasis at presentation included etiology, age of onset, positive consanguinity and itching, where at 3rd month of follow-up they included enlarged firm liver, persistently pale stool, high ALT and AST. At one year, outcome could be predicted by the presence or absence of splenomegaly and low serum albumin (Abdel-*Ghaffar et al., 2014*).

AIM OF THE WORK

The aim of this study was to evaluate patients with high GGT non surgical cholestasis as regard their different aetiologies, demograhic characteristics, clinical picture and outcome.

Chapter One

GAMMA-GLUTAMYL TRANSFERASES

amma glutamyl transferases (GGT) are highly conserved enzymes that occur in bacteria, yeast, plants and in animals from nematodes to humans (*Rawlings et al.*, 2006). It is a two substrate enzyme that removes the terminal γ - glutamyl residue from a molecule of the general form Glu- γ CO-NH-R by breaking the amide bond and transfers it to receptive molecule. Some of the common physiological γ -glutamyl substrates are glutathione (*Elce and Broxmeyer*, 1976), γ -poly glutamic acid (*Kimura et al.*, 2004) and glutamine (*Minami et al.*, 2003).

Sites of production

GGT is found mainly in the membranes of cells that show high secretory or absorptive capacity: the epithelial cells lining the biiary tract, hepatic canaliculi, proximal renal tubules, pancreatic acinar tissue, pancreatic ductules, and intestinal brush border cells (*Rawlings et al.*, 2006)

GGT bioclinical conditions

GGT levels in blood are routinely measured in clinical laboratories. Indeed, GGT in serum is mainly derived from the liver, thus the enzyme is used as marker of liver or biliary tract-associated diseases. The higher the GGT level the greater the "insult" to the liver. Serum levels of GGT are affected by