

Mechano-Chemical Ablation versus Thermal Ablation as a Management Modality for Primary Great Saphenous Varicose Veins

Thesis

Submitted for Partial Fulfillment of Master Degree in **General Surgery**

By

Nihal Mostafa Elhossieny Elhossieny Selim (M.B.B.CH)

Supervised by

Mahmoud Zakarya Abdulaziz Elganzoury

Assistant Professor of General surgery Faculty of Medicine - Ain Shams University

Abdulrahman Mohamed Ahmed Abdulrahman

Assistant Professor of Vascular Surgery Faculty of Medicine - Ain Shams University

Nader Mohamed Mohamed Hamada

Lecturer of Vascular Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my profound gratitude to **DR**Mader Mohamed Mohamed Hamada Lecturer of vascular surgery Faculty of medicine Ain Shams University. Whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

I would like to express my profound gratitude to **Prof. Dr., Abdulrahman Mohamed Ahmed Abdulrahman** Assistant Professor of vascular Surgery, Faculty of Medicine Ain Shams University, for his support and kind attitude.

I would like to express my profound gratitude to **Prof Dr., Mahmoud Zakarya Abdulaziz Elganzoury**Assistant Professor of General surgery Faculty of medicine
Ain Shams University for his support and advices.

Also, I would like to express my deep thanks and gratitude to all members in my family, specially my Parents, for supporting and understanding me all the time.

Last but not least, I'm grateful to my teacher, educator and colleague **Dr.**, **Kareem Hady kamel** who took from his time to teach me, support me or even give a small advice that helped me to make a step forward in my career.

Nihal Mostafa Elhossieny Elhossieny Selim

List of Contents

Title Page No.
List of Tables5
List of Figures7
List of Abbreviations
Introduction 1 -
Aim of the Work16
Review of Literature
 Anatomy, Physiology, Histology and Pathophysiology of Varicose Veins
■ Endovenous Thermal Ablation (Endovenous Laser Ablation)
■ Endovenous Thermal Ablation (Radiofrequency Ablation)
■ Mechanochemical Ablation and Scalerotherapy66
Patients and Methods81
Results
Discussion
Conclusion
Summary
References
Arabic Summary

List of Tables

Table No.	Title	Page No.
Table 1:	Indications for sclerotherapy accord the European guidelines	•
Table 2:	Absolute and relative contraindication sclerotherapy according to the Euroguidelines	opean
Table 3:	Sever and benign complication sclerotherapy according to the Eurguidelines	opean
Table 4:	Venous clinical severity score (VCSS))85
Table 5:	Comparison between groups accord demographic data.	-
Table 6:	Comparison between groups accord comorbidity.	_
Table 7:	Comparison between groups accord length of GSV (cm)	
Table 8:	Comparison between groups accord CEAP	•
Table 9:	Comparison between groups accord diameter of GSV "mm" before proceds	_
Table 10:	Comparison between groups accorded diameter of GSV "mm" after procedure	_
Table 11:	Comparison between groups accord difference between before and procedure diameter of GSV "mm"	after
Table 12:	Comparison between before procedure after procedure according to diame GSV "mm" in group I: MOCA (n=20).	eter of

Tist of Tables cont...

Table No.	Title	Page No.
Table 13:	Comparison between before procedur after procedure according to diame GSV "mm" in group IIa: EVLA (n=10)	ter of
Table 14:	Comparison between before procedure after procedure according to diame GSV "mm" in group IIb: RF (n=10)	ter of
Table 15:	Comparison between groups according compressibility of GSV after interven	_
Table 16:	Comparison between groups according operative time (min).	-
Table 17:	Comparison between groups according compression post-operative (days)	•
Table 18:	Comparison between groups according time to return to normal work (days).	•
Table 19:	Comparison between groups according recanalization.	•
Table 20:	Comparison between groups according adverse events.	
Table 21:	Limbs (unilateral, bilateral)	125
Table 22:	Comparison between VCSS pre and operative in MOCA Treated group	
Table 23:	Comparison between VCSS pre and operative in EVLA Treated group	
Table 24:	Comparison between VCSS pre and operative in RFA Treated group	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Transverse B-mode ultrasound imag	
Figure 2:	Relationship between the fascia and lower extremity	
Figure 3:	Superficial and perforating veins of t	he leg21
Figure 4:	Superficial and perforating veins of and ankle.	
Figure 5:	Deep veins of the leg	24
Figure 6:	The small saphenous vein and latera system of the calf	
Figure 7:	Deep veins of the foot and calf	25
Figure 8:	SFJ anatomy	27
Figure 9:	Ultrasound recognition of the GSV left and the SSV on the right	
Figure 10:	The interfascial compartment in what runs had been called 'sa compartment' and superficial fascovers it (continuous line), 'saphenous	phenous cia that
Figure 11:	Two veins were present at the (left) g	groin31
Figure 12:	The two veins may had their own 'eye'	-
Figure 13:	Only one vein was present here, position over deep vessels suggests AASV, while GSV was no (hypoplastic).	s it was n-visible
Figure 14:	The vein inside the T-G angle was t saphenous vein (GSV).	
Figure 15:	If the T-G angle was empty, we can GSV was hypoplastic and that a that prevailed.	ributary

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 16:	The vein wall was composed of an media and adventitia.	
Figure 17:	Normal venous drainage of lower lim	b43
Figure 18:	Endovenous laser ablation equipm Laser generator and foot pedal. (b fibers) Laser
Figure 19:	Example of different protection protective eyewear is required for person in the procedure room while to is activated, including the operator, staff, and patient.	r every he laser support
Figure 20:	The $ClosureFast^{TM}$ radio-frequency ca	atheter65
Figure 21:	Radio-frequency endovenous ablation with the Closure Fast TM cath	
Figure 22:	Set of Flebogrif catheter	70
Figure 23:	The Tessari double syringe system technique	
Figure 24:	Device used	88
Figure 25:	Left lower extremity prepped and dra a sterile fashion for great saphenous thermal ablation.	venous
Figure 26:	Transverse ultrasound image demon intravascular position of needle tip	strating
Figure 27:	Longitudinal ultrasound image intravascular position of the guidewin	
Figure 28:	Removal of the guide wire	90
Figure 29:	Longitudinal ultrasound image show guidewire crossing the saphend junction and entering the deep system	ofemoral venous

Tist of Figures cont...

Fig. No.	Title Pag	e No.
Figure 30:	The sheath is advanced into the GSV ov	
Figure 31:	Laser tip fiber position	92
Figure 32:	(a) Transverse ultrasound images at the level of the distal thigh, (b) midthigh, and (proximal thigh after delivery of tumesce anesthesia.	(c) nt
Figure 33:	Longitudinal ultrasound images of the proximal great saphenous vein (a) before an (b) after tumescent anesthesia	nd
Figure 34:	Closure FAST catheter with RFC generator	
Figure 35:	Closure FAST Catheter	95
Figure 36:	Closure FAST Catheter	96
Figure 37:	Catheter Shaft Marking	96
Figure 38:	Cross-sectional ultrasound imademonstrating intraluminal placement guidewire.	of
Figure 39:	Guidewire inserted into microsheath	97
Figure 40:	Measurement of the estimated shealength	
Figure 41:	Flebogriff catheter set	100
Figure 42:	Flushing of catheter set.	100
Figure 43:	Introduction of catheter through the vein	101
Figure 44:	Catheter reaching SFJ	101
Figure 45:	Opening of the catheter	102
Figure 46:	Catheter tip 2cm distal to SFJ	102
Figure 47:	Tessari method.	103
Figure 48:	Injection of foam through the catheter	103

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 49: Figure 50:	Catheter while moving through the ve Removal of the catheter	
Figure 51:	Bar chart between groups accord comorbidity	ing to
Figure 52:	Bar chart between groups accord diameter of GSV "mm" before procedur	_
Figure 53:	Bar chart between groups accord diameter of GSV "mm" after procedure	
Figure 54:	Bar chart to compare groups accord difference between before and procedure diameter of GSV "mm"	after
Figure 55:	Comparison between before procedu after procedure according to diameter "mm" in group I: MOCA (n=20)	of GSV
Figure 56:	Comparison between before procedu after procedure according to diameter "mm" in group IIa: EVLA (n=10)	of GSV
Figure 57:	Comparison between before procedu after procedure according to diameter "mm" in group IIb: RF (n=10)	of GSV
Figure 58:	Bar chart comparison between according to compression post-op (days)	erative
Figure 59:	Bar chart comparison between according to time to return to norma (days)	al work
Figure 60:		groups
Figure 61:	Bar chart comparison between	groups

Tist of Abbreviations

Abb.	Full term
AASV	Anterior Accessory Saphenous Vein
AC	
CEAP	Clinical, etiological, anatomical &pathophysiological
CFV	Common femoral vein
CVI	Chronic venous insufficiency
DC	Direct current
DVT	Deep venous insufficiency
EHIT	Endovenous heat induced thrombosis
EVLA	Endovenous laser ablation
EVTA	Endovenous thermal ablation
<i>GSV</i>	Great saphenous vein
LEED	Linear Endovenous energy density
MOCA	Mechanochemical ablation
PVs	Perforating veins
<i>RF</i>	Radiofrequency
<i>RFA</i>	Radiofrequency ablation
SFJ	Saphenofemoral junction
<i>SPJ</i>	Saphenopopliteal junction
SSV	Small saphenous vein
VCSS	Venous clinical severity score
VV	Varicose veins

Introduction

Chronic venous insufficiency (CVI) is one of the most common conditions in the world. The World Health Organization defines varicose veins (VV) of the lower limbs as dilated superficial veins presented as baggy or cylindrical in shape veins and possessing damaged valves. In 70% of cases saphenous veins are affected. (1)

It is reported that 40–60% of women and 25–30% of men will present with symptoms of venous insufficiency during lifetime. (2)

Major risk factors include age and family history for both genders. Pregnancy is an additional risk factor along with standing for long periods, obesity and female gender. (3)

The severity of symptoms of VV can range from occasional discomfort and itching to severe skin ulceration, absence from work, pain and decline in quality of life. About 10% of patients with VV develop skin changes, such as pigmentation or eczema, and about 3% may develop venous ulcers. (4)

The clinical signs and symptoms of venous disease may be classified using the CEAP (Clinical status, Etiology, Anatomy, and Pathophysiology) classification. The degree of severity of pain and other clinical signs or symptoms can be measured using the Venous Clinical Severity Score (VCSS);

the change of VCSS before and after the intervention can be used to measure the efficacy of the intervention. (5)

Primary VV are mostly caused by the failure of at least single valve in a critical location, while secondary varicose veins occur when Deep Vein Thrombosis (DVT) causes deep system and valve damage. In primary VV, the retrograde venous inflow (reflux) allows high-pressure, blood to pass into unsupported superficial veins. These veins become dilated, tortuous, and incompetent. Untreated venous hypertension has significant morbidity. (6)

Venous duplex imaging is the favored technique for evaluation of CVI to confirm the diagnosis and assess its etiology and anatomy. Reversal of flow in the superficial venous system lasting more than 0.5 second indicates valvular incompetence. Deep system reflux is considered abnormal when reversal of flow exceeds 1 second. Longer durations of reflux and higher reflux velocities and volumes have been used to assess the severity of reflux. (7)

The management of varicose veins has changed drastically over recent years, but the ideal treatment remains elusive. Invasive treatments include traditional open surgery and minimally invasive endovenous ablation. The new treatments for varicose veins developed in the last few decades and primarily focused on ablation of the saphenous trunk. (8)

ment of great

Conventional open surgical management of great saphenous veins (GSV) varicosities consists of high saphenofemoral (SFJ) ligation and stripping of the GSV. Recurrence remains a significant problem of open surgery recurrence rates are reported to be up to 20% at two years, 28% at five years. (9)

Endovenous therapy, a minimally invasive procedure, offers potential benefits as faster recovery, reduced complications, fewer physical limitations, and improved health-related quality of life. It can be classified into thermal techniques and non-thermal techniques. Thermal ablation includes Endovenous Laser Ablation (EVLA), Radiofrequency Ablation (RFA), and steam vein sclerosis. Non-thermal ablation includes foam sclerotherapy, Mechanochemical Ablation (MOCA), and injection of cyanoacrylate glue. (10)

EVLA induces a permanent, non-thrombotic occlusion of a refluxing vein using intraluminal application of laser energy. The laser energy induces mural inflammation and fibrosis with resultant vein obliteration. It could be performed as an outpatient procedure using tumescent anesthesia. Duplex ultrasound examination at 5 years follow up after EVLA versus open conventional surgery_showed recurrence rate of 6.7% vs 20.3% respectively. (12)

RFA works in a similar mechanism in comparison to EVLA. Follow-up after five years showed durable and high occlusion rates of 91.9 %, with 94.9 % free of reflux. (13)

Because of EVLA & RFA favorable side effect profile in conjunction to sustained efficacy, in many countries they already replaced high ligation and stripping in treatment of refluxing GSV as well as for treatment of perforators and selected tributaries. (14)

Non-thermal, non-tumescent ablation of saphenous veins is another method for management of VV. MOCA is catheter based systems which strip-off the endothelium of the vein using a rotating wire at its tip while liquid sclerosant is administered concomitantly. (15)

Mechanochemical truncal ablation offers patients reduced intra-procedural pain with equivalent technical success compared to radiofrequency truncal ablation at six months. Patients have equivalent disease specific quality of life and clinical outcomes, and returned to work and normal activities at similar times. (16)