Subfoveal Choroidal Thickness Measurement by Swept Source OCT in Retinitis Pegmentosa Patients

Thesis

Submitted for the Partial Fulfillment of the Master Degree in Ophthalmology

By

Yasmeen Mohamad Mahmoud El Kholy
(M.B, B.Ch)

Supervised By

Prof. Dr. Tarek Ahmad EL-Maamoun

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Prof. Dr. Hala Mohammed El-Mofty

Professor of Ophthalmology Faculty of Medicine, Cairo University Head of Ophthalmology Department, MUST University

Dr. Tamer Fahmy Eliwa

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
Cairo, Egypt
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Tarek Ahmad EL-Maamoun**, Professor of Ophthalmology, Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ibala Mohammed El-Mofty,** Professor of Ophthalmology, Faculty of Medicine, Cairo University, Head of Ophthalmology Department, MUST University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Jamer Fahmy Eliwa**, Assistant Professor of Ophthalmology, Faculty of Medicine - Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Yasmeen El Kholy

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	1
Aim of the Work	16
Review of Literature	
Epidemiology	17
Pathophysiology	23
Clinical Picture	27
₹ Investigations	39
Patients and Methods	49
Results	57
Discussion	64
Summary and Conclusion	68
References	70
Arabic Summry	

List of Tables

Table No.	Title	Page No.
Table (1):	BCVA expressed by LogMAR, Decime Snellen Equivalent	
Table (2):	List of OCT layers agreed by the expretinal imaging	
Table (3):	Demographic characteristics of case controls	
Table (4):	Choroidal thickness, central foveal thand outer retinal layer thickness in and controls	n cases
Table (5):	Correlation between BCVA and outer layer thickness	
Table (6):	BCVA in cases of Retinitis Pigmentos intact or disrupted IS/OS	

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Nomenclature for normal anatomic la seen on SD-OCT images proposed and by the International Nomenclature for Coherence Tomography Panel	d adopted or Optical
Fig. (2):	Showing the view of normal person tunnel vision of patient with pigmentosa	retinitis
Fig. (3):	The atrophic retinal periphery in RF numerous retinal pigment epithelial co	
Fig. (4):	Central or perimacular fleck re sparing the foveola and located prin the temporal retina in a man with Alport syndrome, renal failure, and les	cipally in X-linked
Fig. (5):	Fundus photographs of the right and eye of a patient with Senior-Loken syn	
Fig. (6):	Ocular manifestations as key fear diagnosing mucopolysaccharidoses	
Fig. (7):	Fundus photography of a patient with punctata albescens	
Fig. (8):	Fundus photography of a patient with retinitis pigmentosa	
Fig. (9):	Fundus photography of a patie paravenous retinitis pigmentosa	
Fig. (10):	Intraretinal glittering yellow-white c	•
Fig. (11):	The basic waveform of the ERG	39
Fig. (12):	3D map of multifocal ERG shows hig foveal response and blind spot	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (13):	The m VEP result from a normal s	-
Fig. (14):	Total deviation and grayscale display with retinitis pigmentosa with 20/30	
Fig. (15):	Arterial phase of angiogram show choroidal vessels in areas of RPE a capillaris atrophy	nd chorio-
Fig. (16):	Transmitted hyperfluorescence is seaffected areas	
Fig. (17):	Late phase angiogram	46
Fig. (18):	Normal Retinal Anatomy	47
Fig. (19):	OCT of a patient with RP and cystoid macular edema	
Fig. (20):	Representative ELM and RPE segme optical coherence tomography measurement of central foveal point and outer retinal layers thickness	scan for thickness
Fig. (21):	Mean BCVA (logMAR) in cases o pigmentosa and controls	
Fig. (22): I	Mean central foveal thickness in cases pigmentosa and controls	
Fig. (23):	Mean choroidal thickness in cases of pigmentosa and controls	
Fig. (24):	Mean outer retinal layer thickness i retinitis pigmentosa and controls	
Fig. (25):	Mean BCVA (logMAR) in cases of pigmentosa with intact or disrupted I	

List of Figures (Cont...)

Fig. No.	Title	Page No.	
Fig. (26):	Receiver-operating characteristic for prediction of IS/OS disruption (logMAR) or BCVA (decimal) retinitis pigmentosa	using BCVA in cases of	

List of Abbreviations

Abb.	Full term
adRP	Autosomal Dominant Retinitis Pigmentosa
	Area Under the Curve
	Bardet Biedl Syndrome
	Best Corrected Visual Acuity
	Cystoid Macular Edema
	Cerebrospinal Fluid
	Digenic Inheritance
	External Limiting Membrane
	Electro-oculogram
	Electror et in ograms
ET-1	
HTS	High-Throughput Sequencing
	Internal Limiting Membrane
	Inner Nuclear Layer
	Inner and Outer Segments Junction
mfERG	$Multifocal\ ERG$
mtDNA	Mitochondrial DNA
mVEP	Multifocal Visual Evoked Potential
OCT	Optical Coherence Tomography
	Outer Nuclear Layer
ORL	Outer Retinal Layers
RNFL	Retinal Nerve Fiber Layer
ROS	Reactive Oxygen Species
	Retinitis Pigmentosa
<i>RPE</i>	Retinal Pigment Epithelium
SD	Standard Deviation

List of Abbreviations (Cont...)

Abb.	Full term	
SE	Standard Error	
SFCT	Subfoveal Choroidal Thickness	
<i>SLS</i>	Senior Loken Syndrome	
<i>VEGF</i>	Vascular Endothelial Growth Factor	

ABSTRACT

Background: Retinitis pigmentosa (RP) encompasses a group of hereditary retinal diseases that result in progressive loss of rod and cone photoreceptors. It occurs in approximately one in 4000 individuals, with a worldwide prevalence of 1.5 million affected individuals.

Aim of the Work: This study aimed measure the subfoveal choroidal thickness and outer retinal layer thickness in patients with Retinitis Pigmentosa and correlate them with visual acuity.

Methods: Fifty eyes of clinically and electrophysiologically confirmed retinitis pigmentosa patients compare to fifty eyes of normal healthy individuals of the same age group as controls.

Both groups were investigated for best corrected visual acuity (BCVA)(LogMAR) and Swept Source optical coherence tomography (SS-OCT) evaluating outer retinal layer thickness (ORL), central foveal thickness and subfoveal thickness (SFCT) and the integrity of inner segment-outer segment junction IS/OS as being (Intact (+) or disrupted (-)),

Results: Mean ages were 34.5 ± 11.3 years for controls versus 38.8 ± 12.8 years for RP patients (p>0.05). Mean BCVA (logMAR) was 0.86 for RP group vesus 0.02 for control group. Mean subfoveal choroidal thickness (SFCT) measurements were significantly lower in RP group (288.4 μm) than control group (333.7μm) (P value = 0.008). Significant difference was found between choroidal thickness and BCVA (logMAR) (p-value <0.001). Presence of IS/OS was significantly correlated with BCVA (log MAR) (p value=0.0001). And finally, there was moderate negative correlation between central foveal thickness and BCVA (logMAR) (r = 0.414, p-value = 0.012).

Conclusion: Submacular choroidal thickness as measured by SS-OCT, is significantly reduced in patients with RP and significantly correlated to BCVA and IS/OS integrity.

Keywords: Retinitis Pigmentosa, Inner Segment-Outer Segment Junction, Optical Coherence Tomography, Subfoveal Choroidal Thickness, Central Foveal Thickness

INTRODUCTION

etinitis pigmentosa (RP) refers to a heterogeneous group of inherited retinal diseases that cause degeneration of rod and cone photoreceptors in the human retina (*Milam et al.*, 1998).

RP results from defects in any of more than 60genes, it can be inherited in autosomal dominant, autosomal recessive, X-linked and non- mandlian pattern such as digenic and mitochondrial inheritance and it can occur either alone or with systemic disorders (*Chang et al.*, 2011).

In this disease, the photoreceptors undergo apoptosis which results in reduced outer nuclear thickness of the retina, the pigment deposits (bony spicules) result from both retinal pigment epithelium degeneration and migration into the neural retina in response to photoreceptors cell death (Shahsuvaryan, 2012).

In most of the more common forms of RP, the rods are affected first between childhood and the age of 30. The patient usually notices first night blindness. Then he develops loss of some of his peripheral visual field. In a few cases cones are affected first causing loss of central vision (Hartong et al., 2006).

All RP conditions are progressive, but the speed and pattern of deterioration of sight varies from one person to another. Most people with RP eventually have a very restricted visual field, leaving only a narrow tunnel of vision, most people

with RP retain useful central vision through their twenties, by the age of 50 most people's central vision is affected (Hartong et al., 2006).

Fundus examination showed pigmentary deposits resembling bony spicules initially in the peripheral retina, attenuation of retinal vessels, waxy pallor of the optic disc and various degrees of retinal atrophy (Konieczka et al., 2012).

OCT value in RP:

Structural assessment using optical coherence tomography (OCT) offers high reproducibility. In RP, macula thickness and retinal nerve fiber layer (RNFL) analyses reproducibility (Garcia-Marti et al., 2012). The introduction of OCT has improved image resolution and has enabled the analysis of various macular morphologies quantitatively.

Previous RP studies revealed that the photoreceptor inner segment/outer segment (IS/OS) length and foveal thickness, especially the outer retinal thickness, are related to retinal functions such as the visual field, visual acuity, and ERG (Aizawa et al., 2009).

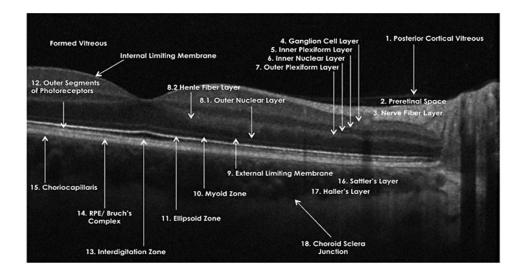


Fig. (1): Nomenclature for normal anatomic landmarks seen on SD-OCT images proposed and adopted by the International Nomenclature for Optical Coherence Tomography Panel. Healthy retina imaged using Zeiss Cirrus. The picture was taken from *Staurenghi et al.* (2014).

In RP, the photoreceptor lines are shortened with the degeneration of photoreceptors. Rod photoreceptor death is followed by degeneration of the RPE cells and eventually leads to the loss of the cones (Milam et al., 1996).

In RP, thinning of the photoreceptor outer segments was found to be followed by a decrease in outer nuclear layer (ONL) thickness (*Hood et al.*, 2011). Based on the SD-OCT line scans, the ONL thinning was found most in RP patients with more advanced disease and patients of older age (Aleman et al., 2007).

With the degeneration of the photoreceptors, retinal structural changes determined by OCT have been found to correlate with the visual functions in RP. Clinical studies

implied a correspondence between a loss of light sensitivity and a decrease in receptor layer thickness on OCT scans (Apushkin et al., 2007). The results showed that normal retinal thickness was observed with normal visual thresholds, and reduced retinal thickness was accompanied by elevated rod and cone thresholds.

Recently identified elliposoid zone which was previously believed to represent the junction between the inner and outer segments (IS/OS junction) of the photoreceptors (Spaide and Curcio, 2011). More recent evidence suggests that the second hyper-reflective band corresponds with the anatomical location of the ellipsoid portion of the photoreceptors inner segment (Lu et al., 2012).

Studies showed that the length of the EZ line corresponded with a sharp drop in visual field sensitivity (Yokochi et al., 2012; Hood et al., 2011). The visual field extent was lost in RP patients without detectable photoreceptor outer segments (Rangaswamy et al., 2010). The studies implied that the absent border of the EZ provided a structural marker for the edge of the visual field. So the length of the photoreceptor segments provides a useful OCT parameter to assess the extent of the visual field.

What is more, the condition of the EZ line is an objective OCT index for assessing visual acuity in RP patients (Sugita et al., 2008). A number of clinical studies have reported