

IMPACT OF DIFFERENT PERFORMANCE PREDICTION MODELS ON MECHANISTIC-EMPIRICAL FLEXIBLE PAVEMENT DESIGN

By

Momen Ragab Mousa Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering-Public Works

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

IMPACT OF DIFFERENT PERFORMANCE PREDICTION MODELS ON MECHANISTIC-EMPIRICAL FLEXIBLE PAVEMENT DESIGN

By

Momen Ragab Mousa Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering-Public Works

Under the Supervision of

Prof. Dr. Ahmed Atef Gadallah

Professor of Highway and Airports Engineering
Public Works Department
Faculty of Engineering, Cairo University

Prof. Dr. Mostafa Amin Abo-Hashema

Professor of Highway Engineering Civil Engineering Department Faculty of Engineering, Fayoum University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2015

IMPACT OF DIFFERENT PERFORMANCE PREDICTION MODELS ON MECHANISTIC-EMPIRICAL FLEXIBLE PAVEMENT DESIGN

By

Momen Ragab Mousa Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering-Public Works

Approved by the

Examining Committee

Prof. Dr. Ahmed Atef Gadallah (Thesis Main Advisor)

Professor of Highway and Airports Engineering Faculty of Engineering, Cairo University

Prof. Dr. Mostafa Amin Abo-Hashema (Member)

Professor of Highway Engineering Faculty of Engineering, Fayoum University

Prof. Dr. Laila Salah Eldin Radwan (Internal Examiner)

Professor of Highway and Airports Engineering Faculty of Engineering, Cairo University

Prof. Dr. Hassan Abd El-zaher Hasan Mahdi (External Examiner)

Professor of Highway and Airports Engineering Faculty of Engineering, Ain- Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer's Name: Momen Ragab Mousa Mohamed

Date of Birth: 17/9/1990 Nationality: Egyptian

E-mail: Momenragab2012@hotmail.com

Phone: 01005052473

Address: New Maadi, Cairo, Egypt

Registration Date: 1/10/2012
Awarding Date: .../.../......

Degree: Master of Science

Department: Civil Engineering-Public Works

Supervisors:

Prof. Dr. Ahmed Atef Gadallah Prof. Dr. Mostafa Amin Abo-Hashema Faculty of Engineering, Fayoum University

Examiners:

Prof. Dr. Ahmed Atef Gadallah (Thesis Main Advisor)
Prof. Dr. Mostafa Amin Abo-Hashema (Member)
Faculty of Engineering, Fayoum University

Prof. Dr.Laila Salah Eldin Radwan (Internal Examiner) Prof.Dr.Hassan Abd El-zaher Hasan(External Examiner)

Faculty of Engineering, Ain-Shams University

Title of Thesis:

IMPACT OF DIFFERENT PERFORMANCE PREDICTION MODELS ON MECHANISTIC-EMPIRICAL FLEXIBLE PAVEMENT DESIGN

Key Words:

Pavement Prediction Models; Transfer Functions; M-E; Pavement Design; Environmental Effect; Fatigue Damage

Summary:

Over the last several years, there has been a shift of the flexible pavement design from the Empirical to Mechanistic-Empirical (M-E) procedure. Several prediction models have been developed for the M-E procedure to analyze fatigue and rutting failures. Each model has its own parameters, limitations, and magnitude of failure damage. This research presents an assessment of the performance of commonly used fatigue and rutting models under different conditions of traffic loading and climate for new and rehabilitated pavement structures. The study was performed to calculate Ac thickness required for two existing pavement cross sections located on major road network in Egypt under wide range of ESALs and two different climatic conditions. Six fatigue models and four rutting models were considered in this study together with six fatigue/rutting failure criteria. A total of 880 computer runs were performed for different combinations of fatigue/rutting models, failure criteria, traffic conditions, and climate using OLFLEX software. This software was developed in a previous study at Cairo University based on Egyptian environmental conditions. For each run, the required AC overlay thickness and fatigue/rutting damage ratios were calculated. The analysis of results indicated that the design is mostly controlled by fatigue failure in old asphalt layer. The analysis also indicated that the Asphalt Institute (AI) and Transport and Road Research Laboratory (TRRL) models are the most appropriate ones to be used in the M-E flexible pavement design.

Acknowledgments

I would like to thank Prof. Dr. Ahmed Atef Gadallah and Prof. Dr. Mostafa Amin Abo-Hashema for their supervision and continuous support throughout the execution of this research and preparation of the thesis.

Special thanks also go to my father, Prof. Dr. Ragab Mousa, for his support and help in reviewing and editorial work of this research.

I would also like to thank Mr. Mohamed Metwally for his support and assistance in formatting the text of this thesis.

I wish to express my deepest appreciation to the German University in Cairo and all professors, especially Prof. Ibrahim El Dimeery, for giving me enough time to accomplish this research and thesis.

Dedication

I dedicate this thesis to my mother, Eng. Horyra Mohamed Mokhtar, for her continuous support and encouragement during the work in this master research and for giving me the spirit throughout my life. I wish to express my sincere appreciation for my father and teacher, Prof. Ragab Mousa Mohamed Mousa for his continuous support during the work in this research and for his continuous guidance throughout my academic life as well as my life, and I dedicate this thesis to him.

I would like to thank my fiancée and love Eng. Mahasen Belal for her endless love, support and understanding and encouragement and I am dedicating this thesis for her.

I would also like to thank my sister and brothers, Dr. Rowda Ragab Mousa, Eng. Saleh Ragab Mousa and Youssef Ragab Mousa for their support and encouragement and I dedicate this work to them.

Table of Contents

	<u>Page</u>
ACKNOWLEDGMENTS	I
DEDICATION	TT
-	
TABLE OF CONTENTS	111
LIST OF TABLES	VI
LIST OF FIGURES	VIII
NOMENCLATURE	
ABSTRACT	
CHAPTER 1 :INTRODUCTION	2
CHAPTER 2 :LITERATURE REVIEW	5
2.1. Introduction	5
2.2. Pavement Performance Evaluation	
2.2.1. General	
2.2.2. Surface Distress Evaluation	
2.2.3. Roughness Evaluation	
2.2.4. Skid Resistance	
2.2.5. Structural Evaluation	
2.2.5.1. Destructive Structural Evaluation	
2.2.5.2. Non-destructive Structural Evaluation	
2.2.5.3. Back Calculation Programs	
2.3. Review of Flexible Pavement Design Procedures	
2.3.1. Empirical Methods	
2.3.2. Mechanistic-Empirical Methods	
2.4. Mechanistic-Empirical Design Procedure	
2.4.1. Overview on M-E Design Process	
2.4.2.1 Flexible Pavement Response	
2.4.2.1. Boussinesq's equations	
2.4.2.3. Multi-Laver Theory	
2.4.2.4. The Finite Element Method	
2.4.3. Multi-Layer Computer Programs	
2.4.4. Outline of M-E Overlay Design Procedure	
2.4.4.1. Design Inputs	
2.4.4.2. Material Properties	
2.4.4.3. Traffic and Loading	
2.4.4.4. Environmental Effects	
2.4.4.5. Modeling Pavement Response	
2.5. Performance Prediction Models for AC Pavements	
2.5.1. Fatigue cracking	
2.5.1.1. Overview	
2.5.1.2. Fatigue Cracking Models	

2.5.1.3. Da	ımage Analysis	35
	verview	
	tting Models	
	ımage Analysis l Cracking	
	Remarks	
U	1-E Computer Applications	
	W	
	AVE 5.0 Computer Program (Washington, WSDOT)	
2.6.3. ROADI	ENT 4.0 Computer Program (Minnesota, MN/DOT)	43
	EX 2006 (Idaho, ITD)	
	X (Egypt)	
	istic-Empirical Pavement Design Guide	
2.7. MEPDG Imp	olantation	48
2.7.1. Overvie	······································	48
2.7.2. Design	Approach	49
	ges [Dzotepe and Ksaibati, 2010]	
	G Implantation Efforts	
_	Remarks	
2.8. Summary		54
CHAPTER 3 :RES	SEARCH METHODOLOGY	55
	ethodology Overview	
	ion	
	xperiments using OLFLEX	
2 5 5 1 0 0		= 0
3.5. Results & Co	omprehensive Analysis	59
	omprehensive Analysis TA COLLECTION AND COMPILATION	
CHAPTER 4 :DA	ΓA COLLECTION AND COMPILATION	60
CHAPTER 4 :DA? 4.1. Introduction	ΓA COLLECTION AND COMPILATION	60
CHAPTER 4 :DA? 4.1. Introduction 4.2. Overview on	TA COLLECTION AND COMPILATION OLFLEX (2003)	60 60
4.1. Introduction 4.2. Overview on 4.3. Data Collect	TA COLLECTION AND COMPILATION	60 60 61
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models	TA COLLECTION AND COMPILATION OLFLEX (2003)	60 60 61
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da	TA COLLECTION AND COMPILATION	60 60 61 61
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other data CHAPTER 5 :DES	TA COLLECTION AND COMPILATION	60 60 61 61 61
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5:DES 5.1. Introduction	TA COLLECTION AND COMPILATION OLFLEX (2003)	6060616161
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance	TA COLLECTION AND COMPILATION	60 60 61 61 67 67
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 : DES 5.1. Introduction 5.2. Performance 5.2.1. Introduction	TA COLLECTION AND COMPILATION	606061616767
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 : DES 5.1. Introduction 5.2. Performance 5.2.1. Introduction 5.2.2. Models	TA COLLECTION AND COMPILATION	60606161676767
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance 5.2.1. Introduct 5.2.2. Models 5.2.3. Closing	OLFLEX (2003) iondata ata SIGN OF EXPERIMENTS Prediction Models ction Selection Process Remarks	60606161676767
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance 5.2.1. Introduction 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite	OLFLEX (2003) ion	606061616767676767
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 : DES 5.1. Introduction 5.2. Performance 5.2.1. Introduction 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite 5.4. Traffic Load	OLFLEX (2003)	606061676767676767
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance 5.2.1. Introduction 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite 5.4. Traffic Load 5.5. Climatic Con	OLFLEX (2003)	60606161676767676767
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance 5.2.1. Introduction 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite 5.4. Traffic Load 5.5. Climatic Con	OLFLEX (2003)	60606161676767676767
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance 5.2.1. Introduct 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite 5.4. Traffic Load 5.5. Climatic Con 5.6. Closing Rem	OLFLEX (2003)	60606161676767676767
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 : DES 5.1. Introduction 5.2. Performance 5.2.1. Introduction 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite 5.4. Traffic Load 5.5. Climatic Con 5.6. Closing Rem CHAPTER 6 : DE	Prediction Models ction Selection Process Remarks ria ing mditions marks	6060616167676767717373
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance 5.2.1. Introduct 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite 5.4. Traffic Load 5.5. Climatic Con 5.6. Closing Rem CHAPTER 6 : DE EXPERIMEN	COLLECTION AND COMPILATION OLFLEX (2003) ion	6060616167676767677373
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance 5.2.1. Introduction 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite 5.4. Traffic Load 5.5. Climatic Con 5.6. Closing Rem CHAPTER 6 : DE EXPERIMEN 6.1. OLFLEX So	COLLECTION AND COMPILATION	606061676767676770737373
4.1. Introduction 4.2. Overview on 4.3. Data Collect 4.3.1. Models 4.3.2. Other da CHAPTER 5 :DES 5.1. Introduction 5.2. Performance 5.2.1. Introduct 5.2.2. Models 5.2.3. Closing 5.3. Failure Crite 5.4. Traffic Load 5.5. Climatic Con 5.6. Closing Rem CHAPTER 6 : DE EXPERIMEN 6.1. OLFLEX So 6.2. Input Data to	COLLECTION AND COMPILATION OLFLEX (2003) ion	6060616167676767737373

6.2.1.2. Material Properties Section Data	78
6.2.2. Performance Prediction Models Data	
6.2.3. Traffic and Environmental Data	79
6.3. OLFLEX Software Output	82
6.4. Results of OLFLEX Experimental Runs	
CHAPTER 7 : ANALYSIS OF OLFLEX EXPERIMENTAL RESULTS	86
7.1. General	
7.2. Overall Statistics of Computer Runs	
7.3. General Approach	
7.4. Impact of Failure Criteria	
7.4.1. Comparing Means of Failure Criteria Results	
7.4.2. Statistical Significance Difference of Failure Criteria	
7.5. Assessment of AC Overlay Design Case	
7.5.1. Assessment of Impact of Fatigue Model	
7.5.1.1. Testing the Impact of Fatigue Model Selection	
7.5.1.2. Comparing the Means of Fatigue Model Results	
7.5.1.3. Testing the Difference between Means of Fatigue Model Results	
7.5.2. Impact of Different Rutting Models	
7.5.2.1. Selection of Design Cases Including Rutting Failure Criteria	
7.5.2.2. Testing the Impact of using Different Rutting Models	
7.5.2.3. Comparing the Means of Rutting Model Results	
7.5.2.4. Testing Difference between Means of Rutting Model Results	
7.5.3. Impact of Different Fatigue and Rutting Models on OLFLEX Results	
7.5.3.1. Selected Combination of Fatigue and Rutting Models7.5.3.2. Comparing Software Outputs	
7.5.4. Impact of Different Climatic Conditions on OLFLEX Results	
7.5.4.1. Introduction	
7.5.4.2. Testing the Difference between Mean Results of North and South Regions	
7.5.4.3. Impact of Climatic Conditions on Results of using Fatigue Models	
7.5.4.4. Impact of Climatic Conditions on Results of Rutting Models	
7.5.4.5. Impact of Climatic Conditions on Results of Combined Fatigue and Rutting 1114	Models
7.5.5. Impact of Truck Axle Loads on OLFLEX Results	115
7.5.5.1. <i>Introduction</i>	
7.5.5.2. Impact of ESALs on AC Overlay Thickness under Different Fatigue Models	
7.5.5.3. Impact of ESALs on AC Overlay Thickness under Different Rutting Models	
7.5.5.4. Impact of ESALs on AC Overlay Thickness under Different Combinations of	
and Rutting Models	
7.6. Assessment of New Construction Design Case	
7.6.1. Impact of Different Fatigue and Rutting Models	
7.6.1.1. Combination of Fatigue and Rutting Models	
7.6.2. Impact of Climatic Conditions on Results of Combined Fatigue and Rutting	
Models	
7.6.3. Impact of ESALs on AC Thickness under Different Combinations of Fatigr	
Rutting Models	
CHAPTER 8 :SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	
8.1. Summary	
8.2. Conclusions	
8.3. Recommendations	
REFERENCES	
APPENDIX A: SAMPLE RESULTS OF THE 880 COMPUTER RUNS	149

List of Tables

	<u>Page</u>
Table 2.1: Critical Analysis Locations in a Pavement Structure [WSDOT, 2003].	15
Table 2.2: Multi-Layer Computer Programs [Qin, 2010]	19
Table 2.3: Poisson's ratio of Paving Materials [Yoder and Witczak, 1975]	22
Table 2.4: Poisson's ratio of soils [Das, 1994]	22
Table 2.5: Typical Modulus of Elasticity Values for Various Materials	23
Table 2.6: Published Fatigue and Rutting Models	40
Table 5.1: Selected Fatigue and Rutting Models	71
Table 5.2: Selected Parameters and Design Experiments	74
Table 5.3: Existing Pavement Cross Section Data for the Case Study	75
Table 7.1: Analysis of 845 runs	86
Table 7.2: Failure Criteria Analysis	88
Table 7.3: Results of t-test for difference between FNO and FNOR Failure Criter	ria91
Table 7.4: Results of t-test for difference between FNR and R Failure Criteria	92
Table 7.5: Results of t-test for difference between FN and FNR Failure Criteria	92
Table 7.6: Analysis of Variance for the Impact of Fatigue Model Selection	94
Table 7.7: Mean and Standard Deviation of Required AC Overlay and Fatigue R	atio for
Different Fatigue Models	95
Table 7.8: Results of t-test of Difference between Means of Fatigue Model Resul	lts99
Table 7.9: Analysis of Variance for the Impact of using Different Rutting Models	s102
Table 7.10: Mean and Standard Deviation of Required AC Overlay and	Rutting
Damage Ratio for Different Rutting Models	103
Table 7.11: Results of t-test of Difference between Means of Rutting Model Results	ults 106
Table 7.12: FDR-O & RDR for Fatigue & Rutting Combinations	108
Table 7.13: Relative Strength of Differnet Pavement Layers in the North and	l South
Regions	109
Table 7.14: Resilient Modulus Values For Different Pavement Layers in D	ifferent
Climatic Regions For a Random Computer Run	110
Table 7.15: Results of T-test For Difference Between North & South	111

Table 7.16: Mean AC Overlay Thickness Grouped by Fatigue Model and Climatic
Region
Table 7.17: Mean AC Thickness For The Different Fatigue Models In The North and
South
Table 7.18: Mean AC Thickness for Combined Fatigue and Rutting Model for North
and South Regions
Table 7.19: Mean Thickness (mm) for each Fatigue Model for Different ESALs116
Table 7.20: Regression Data For Each Fatigue Model
Table 7.21: Average Additional AC Overlay Thickness (mm) When Doubling ESALs
for All Fatigue Models
Table 7.22: Mean Thickness (mm) For Each Rutting Model For Different ESALs120
Table 7.23: Regression Data For Each Rutting Model
Table 7.24: FDR-N and RDR for Fatigue and Rutting Combinations
Table 7.25: Required Thickness for different ESALs using AASHTO 1993126
Table 7.26: Mean AC Thickness for Different Fatigue and Rutting Models and for
North and South Regions
Table 7.27: Relative Strength of Differnet Pavement Layers In the North and South
Regions
Table 7.28: Mean Thickness (mm) For Each Fatigue Model Combined With AI Rutting
Model For Different ESALs
Table 7.29: Mean Thickness (mm) For Each Fatigue Model Combined With TRRL
Rutting Model For Different ESALs
Table 7.30: Regression Data For Each Fatigue Model Combined With AI Rutting
Model
Table 7.31: Regression Data For Each Fatigue Model Combined With TRRL Rutting
Model
Table 7.32: Average Additional AC Thickness (mm) When Doubling ESALs for All
fatigue and rutting Models
Table A1: Sample Results of 880 Computer Runs

List of Figures

	<u>Page</u>
Figure 2.1: Main Components of Mechanistic-Empirical Design Procedure	15
Figure 2.2: Critical locations in flexible pavement [Muench, et al., 2003]	16
Figure 2.3: Notation for Boussinesq's equations in polar coordinates [Ullidta,198	37]16
Figure 2.4: Layered Elastic Inputs [WSDOT, 2003]	21
Figure 2.5: Schematic of the Modulus-Temperature Adjustment	26
Figure 2.6: Fatigue Cracking Mechanism	28
Figure 2.7: Subgrade Rutting Failure Mechanism	37
Figure 2.8: Everpave 5.0 screen	43
Figure 2.9: ROADENT 4.0 screen	45
Figure 2.10: WINFLEX 2000 screen	46
Figure 2.11: OLFLEX screen	48
Figure 2.12: The three-stage scheme of the MEPDG process [ARA, 2004]	50
Figure 3.1: Research Methodology	57
Figure 4.1: General Map for Aswan Edfo Desert Road (South)	63
Figure 4.2: General Map for Zagazig Benha Agricultural Road (North)	64
Figure 4.3: Collected Data for the North Region	65
Figure 4.4: Collected Data for the South Region	66
Figure 5.1: Fatigue Life- Tensile Strain Relationship	69
Figure 5.2: Rutting Life- Compressive Strain Relationship	70
Figure 6.1: Pavement and Material Parameters Data	77
Figure 6.2: Types of Fatigue and rutting models and their parameters	79
Figure 6.3: Traffic related data	80
Figure 6.4 Seasonal Adjustment Factors	80
Figure 6.5: Temperature Adjustments for AC Layers	81
Figure 6.6: Output Screen in OLFLEX	83
Figure 6.7: Strain Report	84
Figure 6.8: Seasonal Variation of Layer Moduli for each layer and the overlay	
Figure 7.1: Average AC overlay for different failure criteria	89

Figure 7.2: Average damage ratio for different failure criteria89
Figure 7.3: Mean of Required AC Overlay for Different Fatigue Models96
Figure 7.4: Standard Deviation of Required AC Overlay for Different Fatigue Models
96
Figure 7.5: Mean of Fatigue Damage Ratios for Different Fatigue Models97
Figure 7.6: Standard Deviation of Fatigue Damage Ratios for Different Fatigue Models
97
Figure 7.7: Mean of Required AC Overlay for Different Fatigue Models (without Shell
Model)
Figure 7.8: Mean of Calculated AC Overlay for Different Rutting Models103
Figure 7.9: Standard Deviation of Calculated AC Overlay for Different Rutting Models
Figure 7.10: Mean of Rutting Damage Ratio for Different Rutting Models104
Figure 7.11: Standard Deviation of Rutting Damage Ratio for Different Rutting Models
Figure 7.12: Change in AC Thickness (mm) / 1°C For Different Fatigue Models112
Figure 7.13: Change in AC Thickness (mm) / 1°C For Different Rutting Models113
Figure 7.14: Change In AC Thickness (mm) / 1°C For Different Fatigue and Rutting
Models
Figure 7.15: Linear Model for Thickness-EASLs for Different Fatigue Models117
Figure 7.16: Linear Model for Thickness-EASLs for Different Rutting Models120
Figure 7.17: Mean AC Thickness for Different Model Combination123
Figure 7.18: Mean FDR-N for Different Model Combination
Figure 7.19: Mean RDR For Different Model Combination
Figure 7.20: Change In AC Thickness(mm)/ 1°C For Different Fatigue and Rutting
Models
Figure 7.21: Linear Model for Thickness- ESALs Relationship for Fatigue Models
Combined With AI Rutting Model
Figure 7.22: Linear Model for Thickness- ESALs Relationship for Fatigue Models
Combined With TRRL Rutting Model

Nomenclature

GARBLT = General Authority for Roads, Bridges and Land Transport

ME = Mechanistic-Empirical

AC = Asphalt concrete
AI = Asphalt Institute

TRRL = Transport and Road Research Laboratory

Mn = Minnesota

ARE = Austin Research Engineers

AASHTO = American Association of State Highway and Transportation

SHRP = Strategic Highway Research Program

NSHRP = National Cooperative Highway Research Program

ESAL = Equivalent Single Axle Load

Abstract

Over the last several years, there has been a shift of the flexible pavement design from the Empirical to Mechanistic-Empirical (M-E) procedure. The main design considerations in the M-E procedure are: to limit the horizontal tensile strain induced at the bottom of the Asphalt Concrete (AC) layer to minimize fatigue cracking and; to limit the vertical compressive strain induced on the top of the subgrade to control permanent deformation or rutting. Several fatigue and rutting performance models or transfer functions have been developed by various highway agencies to relate the asphalt modulus and/or the measured strains to the number of load repetitions to fatigue and rutting failures. Each model has its own parameters, limitations, and magnitude of failure damage. The objective of this research is to assess the impact of using different transfer functions on the designed thickness of flexible pavements under different conditions of traffic loading and climate for new and rehabilitated pavement structures.

Two major roads located in North and South of Egypt were selected in the study to represent two different climate conditions. A wide range of traffic loading conditions (ESALs) is considered in the analysis together with six fatigue models and four rutting models. Moreover, six fatigue/rutting failure criteria were taken into consideration. This creates a total of 880 computer runs using OLFLEX software, a Mechanistic-Empirical overlay design system, which was developed in a previous study at Cairo University based on Egyptian environmental conditions. For each run, the required AC overlay thickness and fatigue/rutting damage ratios were recorded.

The analysis of results indicated that the overlay design is mostly controlled by fatigue failure in old asphalt layer. The analysis also indicated that the Asphalt Institute (AI) and Transport and Road Research Laboratory (TRRL) models are the most appropriate ones to be used in the M-E flexible pavement design.