

Evaluation of the inhibitory potential of the bee venom fraction(s) on highly pathogenic avian influenza (H5N1)

A master thesis submitted by

Dina Mohamad Osama El Shaarawy

B.Sc., Biochemistry, 2006, Faculty of Science, Ain Shams University

Under Supervision of

Prof. Dr. Ahmed Osman Egiza

Professor of Biochemistry, Faculty of Science, Ain Shams University

Prof. Dr. Abdullah A. Selim

Professor of poultry diseases, Reference Lab. for Quality Control on Poultry Production, Animal Health Research Institute (AHRI)

Dokki, Giza

Dr. Nour Mohamed Abd El-Kader

Lecturer of Biochemistry, Faculty of Science,
Ain Shams University

Faculty of Science
Ain Shams University
(2012-2018)

Biography

Name: Dina Mohamed Osama El-Shaarawy,

Faculty of Science,

Ain Shams University.

Date of Graduation: July 2006, Biochemistry Department,

Degree awarded: B.Sc. in Biochemistry/Entomology

(Good degree).

Occupation: Biochemist in virology unit,

Reference laboratory for quality control on poultry production,

Animal health research institute.

Declaration

This thesis has not been submitted for a degree at this or any other university

Dina M. Osama El-Shaarawy

I would like to dedicate this work to every member of my faithful family especially my father for their endless love, support, and encouragement.

Finally to my supervisors and colleagues who share for the appearance of this work.

Acknowledgement

Acknowledgment

Thanks are due first and last for a Mighty Allah for guiding me in my whole life.

I would like to express my deep thanks and sincere gratitude to *Pro. Dr. Ahmed Osman Egiza*, Professor of biochemistry, Faculty of Science, Ain Shams University, for his endless help, constant guidance sincere encouragement, valuable advices, and criticism.it is a great honor for me to work under his supervision throughout my postgraduate career.

It is difficult for me to find words that can express my deep gratitude and sincere appreciation towords *Dr. Nour*

Mohamed Abdel-Kader, lecture of biochemistry, Faculty of Science, Ain Shams University, for suggesting the points and for her creative thinking.

I would to like to give my faithful thanks for **Pro. Dr. Subdullah Gelim**, Professor of poultry diseases, Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute for his active supervision, valuable advices, continuous encouragement, and providing me with all possible laboratory facilities to complete my work.

I would like to express all thanks to my colleagues who share to accomplish this study.

My deep thanks and appreciation to my family specially my parents for their support.

Dina M. Osama El-Shaarawy

Abstract

Abstract

The highly pathogenic avian influenza H5N1 virus as a major for poultry industry and human health around the world needs a decisive control, melittin and secretory phospholipase A2 (sPLA2) of honeybee venom (*Apis mellifera*) are known by their antiviral effect against both enveloped and non-enveloped viruses.

In this study, melittin, sPLA2, and their mixture used against two Egyptian strains of H5N1 virus to estimate their virucidal effects

Bee venom fractions and their mixture were applied on MDCK cell line through three different treatments, pre-treatment, post-treatment, and co-incubation treatment by using different concentrations for each fraction. The concentrations of melittin used were (3 μ M & 1.5 μ M), for sPLA2 they were (1 μ M & 0.5 μ M), while the mixture only used at its maximum CC50 (0.4 μ M).

Melittin, sPLA2, and melittin-sPLA2 mixture showed up their virucidal effects in the three treatments and the results confirmed by (qRT-PCR), but their effects on cell health differ according to the dose applied from each fraction and the type of treatment. From results, 0.4µM of melittin-sPLA2 mixture gave superior results in cells protection compared to other fractions even compared to their low concentrations and the best treatment was co-incubation, pretreatment, and post-treatment, respectively

This study recommend to apply those fractions in their two fold (CC50) concentration and using either co-incubation treatment or pre-treatment. A further in-vitro & in-vivo experiments are needed to know if they are applicable in vivo or not

Acknowledgment 1
AbstractII
Table of ContentsIII
List of FiguresVIII
List of TablesX
List of Abbreviation XII
Introduction XVII
AimXIX
1 Review of literature: 1
1.1 History of influenza virus worldwide: 1
1.2 History of highly pathogenic avian influenza virus
(H5N1):
1.3 History of highly pathogenic avian influenza virus
(H5N1) in Egypt: 4
1.4 Avian influenza virus classification and nomenclature
7
1.5 Biophysical properties of Influenza A virus: 8
1.5.1 Morphological structure and genomic organization of
virus: 8
1.6 Virus replication: 13
1.6.1 Entry into the host cell:
1.6.2 Entry of vRNPs into the nucleus:
1.6.3 Transcription and replication of the viral genome:

1.6.4	Export of vRNPs from the nucleus:	5
1.6.5	Synthesis of viral proteins: 16	5
1.7 Inc	cubation period17	7
1.8 An	ntigenic variation of avian influenza virus strain 17	7
1.8.1	Antigenic drift:	7
1.8.2	Antigenic shift:	7
1.9 Dia	agnosis:18	3
1.9.1	Clinical signs:	3
1.9.2	Postmortem lesion:)
1.9.3	Laboratory diagnosis:)
1.9.4	Molecular/ nucleic acid assay:	2
1.10 Tr	ransmission of (H5N1) from birds to human: 24	1
1.11 Ec	onomic loss:	3
1.12 Co	ontrol of avian influenza virus (AIV):30)
1.12.1	Antiviral drugs:)
1.12.	1.1 M2-inhibitors: 31	1
1.12.	1.2 NA inhibitors:	2
1.12.2	2 Vaccination	7
1.13 Be	e venom Melittin (Bv MEL):48	3
1.13.1	Interaction of melittin with lipid bilayer membrane:	50
1.13.2	Melittin as antimicrobial agent:)
1.14 Be	e venom secretory Phospholipase A2 (Bv sPLA2):	51
	Interaction of phospholipase A2 with lipid bilayer brane:	2
	Bee venom Phospholipase A2 (Bv sPLA2) rations:	3

2 Materials & Methods:57
2.1 Influenza virus (H5N1) propagation and titration in specific pathogen free (SPF) emberyonated chicken eggs
(ECE):58
2.2 Haemagglutination assay (HA):61
2.3 Haemagglutination inhibition test (HI): 63
2.4 Tissue culture cell lines tests: 67
2.4.1 Preparation of chicken embryo fibroblast: 67
2.4.2 Viability of cell lines using Trypan blue exclusion
method:
2.4.3 Titration of (H5N1) virus on cell lines:
2.4.3.1 Virus titration by end point method (TCID50) using cell lines:
2.4.3.2 Virus titration by plaque assay using cell lines: 74
2.5 Evaluation of bee venom fractions (Melittin &
Phospholipase A2) against (H5N1)76
2.5.1 In vitro cytotoxic assay (CC50) for each bee venom fraction, Melittin (M) and Phospholipase A2 (sPLA2): 76
2.5.2 In vitro toxicity assay against virus isolates: 79
2.6 Antiviral activity of bee venom fractions (Melittin and Phospholipase A2) against (H5N1) on MDCK cell line: 81
2.6.1 Treatment of MDCK cell lines with bee venom fractions before adding virus (Pre-treatment):
2.6.2 Treatment of MDCK cell line with venom fractions after infection with (H5N1) virus (Post-treatment): 83
2.6.3 Virucidal effect of bee venom fractions on (H5N1) virus before cell infection (Co- incubation):
2.6.4 Harvesting of viruses from cell lines:

2.7 Quantitative Real-Time reverse transcriptase (qRT-
PCR) test:
3.1 Results of propagation and titration of (H5N1) virus isolates on (ECE):
3.1.1 Titration of ((A/chicken/Egypt/1063/2010(H5N1)) (variant isolate) on (ECE):
3.1.2 Titration of (A/chicken/Egypt/1112/2011(H5N1)) (classic isolate) on (ECE):
3.2 Results of haemagglutination test (HA): 100
3.3 Results of haemagglutination inhibition test (HI): 102
3.4 Results of titration of (H5N1) virus on cell lines by end-point method (TCID50):
3.4.1 Results of H5N1 titration by end-point method (TCID50) using MDCK cell line:
3.4.2 Results of (H5N1) titration by end-point method (TCID50) using Vero cell line:
3.5 Results of H5N1 titration by plaque assay using MDCK cell line:
3.6 Results of in-vitro cytotoxicity (CC50) for each bee venom fraction, Melittin (M), Phospholipase A2 (sPLA2), & their mixture on MDCK cell line:
3.7 Results of In vitro toxicity assay against virus isolates:
3.8 Results of antiviral activity of bee venom fractions (Melittin, Phospholipase A2, and mixture) against 2 isolates of (H5N1) on MDCK cell line:
3.8.1 Results of treatment of cell line with bee venom fractions before adding virus (Pre-treatment):

	Results of treatment of cell line with bee vious after infection with virus (Post-treatment	
	Results of virucidal effect of bee venom fra incubation):	
	desults of Quantitative reverse transcriptase qRT-PCR) test:	
4 Discus	ssion:	134
5 Summ	nary & Conclusion:	145
6 Refere	ences	147

List of Figures

List of Figures

Figure 1-1. Outbreaks of Highly Pathogenic Avian Influenza
(subtype H5N1) in poultry notified by OIE from 2003-2016
6
Figure 1-2. Scanning electron microscope image of the influenza
A virus12
Figure 1-3. A diagrammatic representation of influenza A virus
showing protein and RNA composition12
Figure 1-4. Replication of influenza virus
Figure 1-5. Resistance mechanism of M2 toward amino-
adamantyls35
Figure 1-6. Active site of NA-inhibitor shows some residues of
catalytic site (R118, E276, D151, R292, R224, R371, and
R152), some residues of framework site (E119, N294, and
H274), 150-loop, and where the NA- inhibitor binds36
Figure 1-7. Different mechanisms of melittin:54
Figure 1-8. PLA2 mode of action55
Figure 3-1. Result of (HA) test
Figure 3-2. Result of (HI) test
Figure 3-3. The steps of CPE on MDCK cell line through 3 days
post-infection:
Figure 3-4. The steps of CPE on Vero cell line through 3 days
post-infection:
Figure 3-5. Results of titration for different dilutions of two
(H5N1) isolates by plaque assay on MDCK cell line: 113
Figure 3-6. Graph represents Melittin (CC50) on MDCK cell line.
Figure 3-7. Graph represents Melittin (CC50) on Vero cell line
116
Figure 3-8. Graph represents (sPLA2) (CC50) on MDCK cell
line

List of Figures

Figure 3-9. Graph represents (sPLA2) (CC50) on Vero cell lin	ne.
	.118
Figure 3-10. Graph represents for (Melittin-sPLA2 mixture)	
(CC50) on MDCK cell line.	.119
Figure 3-11. Graph represents for (Melittin-sPLA2 mixture)	
(CC50) on Vero cell line	.120
Figure 3-12. Comparison between estimated (CC50) of (melit	tin,
sPLA2, and mixture) on Vero and MDCK cell line	.121
Figure 3-14. Standard curve of variant isolate	
(A/chicken/Egypt/1063/2010(H5N1))	.131
Figure 3-13. Standard curve of classic isolate	
(A/chicken/Egypt/1112/2011(H5N1))	.131
Figure 3-15. Amplification plots of classic and variant isolate	s of
(H5N1) after different treatment methods with bee venom	1
fractions (melittin, sPLA2, and mixture)	.133

List of Tables

List of Tables

Table 1-1. Gene and protein information on Influenza Virus A
modified from10
Table 1-2. The fatality rate of human cases of avian influenza A
(H5N1) reported to WHO/NHC26
Table 1-3. The world confirmed human cases at 200727
Table 1-4. Cumulative human cases of avian influenza A (H5N1)
reported to WHO/NHC28
Table 1-5. Losses (deaths and destroyed animals) due to (HPAI)
outbreaks in domestic birds by region (2013-2017)29
Table 1-6. Different platforms for vaccine production39
Table 1-7. Conventional technologies for vaccine manufacturing.
42
Table 1-8. Advanced technologies for vaccine manufacturing44
Table 1-9. Composition of bee venom (BV)49
Table 2-1. Real-Time RT-PCR Reaction Mix Volumes for one
reaction:93
Table 2-2. Thermo cycling conditions for gene-specific Probe and
Primer sets Phase step Number of cycles Time Temp for Type
A:94
Table 2-3. Real-Time PCR Thermo cycling conditions for H5: .94
Table 3-1. Titration of (A/chicken/Egypt/1063/2010(H5N1))
(variant isolate) on (ECE)97
Table 3-2. Titration of (A/chicken/Egypt/1112/2011(H5N1))
(classic isolate) on (ECE):99
Table 3-3. Titration of (A/chicken/Egypt/1063/2010(H5N1))
(variant isolate) on MDCK cell line:106
Table 3-4. Titration of (A/chicken/Egypt/1112/2011(H5N1))
(classic isolate) on MDCK cell line:107
(classic isolate) on MDCK cell line:

List of Tables

Table 3-6. Titration of (A/chicken/Egypt/1112/2011(H5N1))	
(classic isolate) on Vero cell line:	111
Table 3-7. Comparison between different bee venom fraction	
results in (Pre-treatment):	127
Table 3-8. Comparison between different bee venom fraction	
results in (Post-treatment):	128
Table 3-9. Comparison between different bee venom fraction	
results in (Co-incubation):	129
Table 3-10. Ct. values of standard curves for (H5N1) classic ar	ıd
variant isolates	130