Misoprostol before Elective Caesarean Section for Decreasing the Neonatal Respiratory Morbidity In diabetic patients

Master Degree in Obstetrics and Gynecology

By:

Sameh Said Mohamed

M.B.B.Ch. (2010) Ain Shams University Resident in qalyub specialized hospital

Under Supervision

Prof. Dr. Ayman Abd El Razek Abulnour

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Prof. Dr. Sherif Fathi El-Mekkawi

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed El-kotb

Assistant prof of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2019

ؠؿٚؠٚٳڛؙٳٳڿؿڒؽ

وقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ وقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ ورَسُولُهُ والْمُؤْمِنُونَ

صدق الله العظيم

سورة التوية آية (١٠٥)

Acknowledgment

First and foremost, all praise to God, who has graced me with everything I've ever asked for and more.

I find it difficult to express —in one page—my gratitude and sincere feelings to my supervisors and all those who offered me help and advice during laying down the manuscript of this thesis. Your contribution will always be remembered.

I would like to express my deepest respect to Ayman Abd El Razek Abulnour, Professor of Obstetrics and Gynecology, Faculty of Medicine-Ain shams University for his continuous advice, support and guidance.

I would also like to express my deep gratitude to **Prof. Dr.**Sherif Fathi El-Mekkawi , Professor of Obstetrics and Gynecology, Faculty of Medicine-Ain shams University for his encouragement, sincere guidance, and patience during accomplishment of this work.

I would also like to express my deep gratitude to **Dr**. **Ahmed Mohamed El-kotb**, assistant professor of Obstetrics and Gynecology, Faculty of Medicine-Ain shams University for his encouragement, sincere guidance, and patience during accomplishment of this work.

Finally and mostly, special thanks to my parents, family and fellow colleagues for their endless support, patience, and forbearance during my work.

List of Content

Acknowledgement	
List of Abbreviations	i
List of Table	ii
List of Figure	iv
Introduction	1
Aim of Work	4
Review of Literature	5
Patients and Methods	97
Results	105
Discussion	120
Summary and Conclusion	125
Recommendations	128
References	129
Arabic Summary	

List of Abbreviations

Abbr. Full-term

AA Arachidonic Acid

ABCA 3 ATP Binding cassette gne

ABG Arterial Blood Gases

AQP5 Aquaporin 5 water channel

ASUMH Ain Shams University Maternity Hospital

ATP Adenosine Triphosphate

BNP Brain Natriuretic Peptide

BPD Bronchopulmonary Dysplasia

CRF Case Record Form

C.S Caesarean Section

C.T Computed Tomography

CDMR Caesarean Delivery on Maternal Request

cGMP Cyclic Guanosine Mono Phosphate

CI Confidence Interval

CNS Central Nervous System

CONSORT Consolidated Standards of Reporting Trials

COX Cyclooxygenase

C-PAP Continuous Positive Airway Pressure

ECD Elective Caesarean Delivery

ECMO Extra Corporial Membrane Oxygenation

EDA Epidural Anaesthesia

ENaC Epithelial Na Channels

eNO Endothelial Nitric Oxide

EP E Prostanoid receptor

ET Endothelin

GA General Anaesthesia

HFOV High Frequency Oscillatory Ventillation

HMD Hyaline Membrane Disease

IM Intra muscular

iNO Inhaled Nitric Oxide

IP3 Inositol Triphosphate

IV Intra venous

IVH Intra Ventricular Haemorrhage

LDA Lactate Dehydrogenase

MRI Magnetic Resonance Imaging

mRNA Messanger Ribonucleic Acid

NEC Necrotizing Enterocolitis

NG Nasogastric

NICHD National Institute Of Child Health and Human

Development

NICU Neonatal Intensive Care Unit

N-SAIDS Non Steroidal Anti Inflamatory Drugs

NTproBNP Plasma N terminal pro-B-type Natriuretic

Peptide.

PaCO₂ Partial Pressure of Carbon Dioxide in Arterial

Gas

PaO₂ Partial Pressure of Oxygen in Arterial Gas

PDA Patent Ductus Arteriosis

PGI2 Prostaglandin I2 (Prostacyclin)

PLA Phospholipase A

PMT Pulmonary Mechanics Testing

PPHN Persistant Pulmonary Hypertension

PVR Pulmonary Vascular Resistance

RCT Randomized Controlled Trial

RD Respiratory Distress

RDS Respiratory Distress Syndrome

ROP Retinopathy of Prematurity

RR Risk Ratio

RR Respiratory Rate

SR Sarcoplasmic Reticulum

SVR Systemic Vascular Resistance

Tmax Time of maximum plasma concentration

TTN Transient Tachypnea of The Newborn

TXA2 Thromboxane A2

US Ultrasound

UK United Kingdom

VLBW Very Low Birth Weight

SD Standard Deviation

SPSS Statistical Package for Social Science

List of Tables

Table	Title	Page
1	Screening for and diagnosis of GDM	26
2	Sensitivity and specificity of GCT	27
3	Cutoffs for 100g OGTT	28
4	Calculation of diabetic diet	35
5	Target glucose levels during pregnancy	36
6	The various commercial insulin preparations	36
7	Antepartum fetal surveillance scheme in pregestational diabetes	40
8	Complications of elective caesarean section	79
9	Signal transduction of Prostanoid Receptors	93
10	Description of personal, medical and	105
	surgical history among study group I (Treatment group)	
11	Description of obstetric history among study group I (Treatment group)	106
12	Description of vital data among study group I (Treatment group)	107
13	Description of neonatal characteristics among study group I (Treatment group)	107
14	Description of timing of PG administration before CS among study group I (Treatment group)	108
15	Description of personal, medical and surgical history among study group II (Control group)	108
16	Description of obstetric history among study group II (Control group)	109
17	Description of vital data among study group II (Control group)	109

18	Description of neonatal characteristics among study group II (Treatment group)	110
19	Comparison between both study groups as regard personal, medical and surgical history	111
20	Comparison between both study groups as regard obstetric history	114
21	Comparison between both study groups as regard vital data	115
22	Comparison between both study groups as regard neonatal characteristics	116

List of Figures

Fig.	Title	Page
1	Normal lung pattern in U.S	6
2	Pathology of TTN	9
3 4	A supine anteroposterior	13
4	TTN lung pattern in U.S	14
5	Fetal Pneumonia pattern in ultrasound	16
6	Etiopathogenesis of diabetes in pregnancy	25
7	Risk of congenital malformations against	31
- 0	HbA1C levels	1.0
8	Pathogenesis of respiratory distress syndrome	46
9	Pathology of RDS	47
10	Surfactant metabolism	48
11	Microscopic appearance of lung of an infant	49
	with RDS	
12	X-ray and U.S. features of RDS	54
13	Transitional fetal circulation	59
14	ET and NO pathways in pulmonary arterial	62
	endothelial and smooth muscle cells	
15	Diagrammatic representation of a normal	63
	pulmonary artery in a term newborn infant	
16	Idiopathic PPHN shows hyperlucent lung	68
	fields due to profound hypoxemia	
17	Cesarean delivery rate (%)	75
18	Estimated perinatal deaths associated with	86
	elective C.S versus expectant management	
	depending upon the gestational age	
19	Description of type of DM among both study	112
	groups	
20	Comorbidity among both groups	112

Introduction

The increased incidence of the idiopathic respiratory distress syndrome (IRDS) in infants of diabetic mothers may be explained by preterm delivery and asphyxia but the metabolic derangement per se may also be responsible for the inadequate production of lung surfactant. In addition, the activities of key enzymes responsible for the production of these phospholipids are decreased in the fetal lung tissue. (Tydénet al.,2017).

Neonatal respiratory distress may occur in either term or preterm newborns with a higher relative risk in preterm, and whether born vaginally or through caesarean section, but in a higher percentage after elective caesarean section whose rate is rising either due to maternal request (*Minkoffet al., 2003*), obesity (*Poobalanet al., 2009*), and older maternal age (*Callawayet al., 2005*) than after normal vaginal delivery (*Zanardo et al., 2004*) or emergency caesarean section (*Hansen et al., 2007*).

It is responsible for 30% of neonatal deaths (*Harrison*, *et al.*, 2008). It has several subdivisions:

One is the respiratory distress syndrome (RDS) which is called hyaline membrane disease, it can occur in about 1% of pregnancies as a result of a pathology in lung surfactant either qualitative or quantitative (*Whitsett et al.*, 2005), and usually in preterm neonates (*Blandet al.*, 2008).

Another is transient tachypnea of the newborn (TTN) in which there is respiratory distress and increased

respiratory rate due to delayed resorption of pulmonary fluid, as a result of defective catecholamine surge (*Faxeliuset al., 1983*), its incidence is 5.7/1000 deliveries (95% CI;1.7-2.7)(*Morrison et al., 1995*).

And also includes persistent pulmonary hypertension in which the fetal pulmonary vascular resistance remains high and the pulmonary blood flow still low after delivery (*Whitsettet al.*, 2005).

Catecholamines can stimulate pulmonary fluid reabsorption through acting upon beta-adrenergic receptors in fetal lung which present more late in gestation (*Bland,et al., 2008*), and thus enable the secretion of surfactant (*Whitsettet al., 2005*).

This surge of catecholamines can be provoked through prostaglandins given before caesarean section to pregnant diabetic females (*Singhet al.*, 2004) as those who are born vaginally are found to be adapted metabolically through a higher catecholamine level at birth (*Hagneviket al.*, 1984).

So, prostaglandins may be given about one hour before an elective caesarean section after excluding the presence of contraindication to their use to decrease the neonatal respiratory diseases and thus, the number of children who suffered from bronchopulmonary dysplasia that occurs frequently in children who had previously TTN will diminish (*Whitsett et al.*, 2005).

The prostaglandins in common use are misoprostol (prostaglandin E_1) and dinoprostone (prostaglandin E_2). Prostaglandin E_1 (Misoprostol) is available as a cervical ripening agent in the form of 100 or 200 mcg tablets which can be taken orally, vaginally, or sublingually, their Tmax is 12 ± 7 minutes with terminal half life ranging from 20 to 40 minutes (*Woodet al.,2001*).

Prostaglandins E_2 which are available as oral tablets, pessaries, or vaginal gels are uteroselective agents (*O'Brienet al.*, 1995) widely used for induction of labour, start action within 10 minutes and become in full action after about 12 hours (*Rayburnet al.*, 1989).

In a previous prospective study of 36 women scheduled for an elective caesarean section beyond 38weeks (*Motaze et al.*, 2013),18 women received intravaginal prostaglanadin E₂ gel and 18 received placebo, there was one neonatal respiratory distress case in the control group which was reported as transient tachypnea of the newborn (risk ratio (RR) 0.33, 95% confidence interval (CI) 0.01 to 7.68) with similar Apgar score at one and five minutes and no need to mechanical ventilation nor side effects related to treatment in either group, so no difference in respiratory outcome reported although there was a significantly higher catecholamine level in the intervention group.

Aim of the work

The aim of this study is to assess the efficacy of Prostaglandin E_1 on the reduction of the neonatal respiratory morbidity in diabetic women scheduled for elective caesarean section.

Research hypothesis: In diabetic pregnant women undergoing elective C.S, Prostaglandin E_1 may reduce neonatal respiratory morbidity.

Research question: In diabetic pregnant women undergoing elective C.S, Does prostaglandin E1 decrease the rate of neonatal respiratory morbidity?