

The Effect of Pectoralis Major Block type 1 (PECS 1) on intraoperative general anesthetic requirements and postoperative analgesic requirements for breast cancer patients Undergoing Mastectomy

Thesis

Submitted for Partial Fulfillment of Master Degree in Anesthesiology

By Yasmin Ibrahim El Emary

M.B., B.Ch, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Amr Mohamed Al Said Kamel

Professor of Anesthesiology, Intensive care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Ashraf Ahmed Abd El Hamid Abou Slemah

Associate Professor of Anesthesiology, Intensive care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Wael Sayed Ahmed El Gharabawy

Lecturer of Anesthesiology, Intensive care and Pain Management
Faculty of Medicine - Ain Shams University
Faculty of Medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgment

Faculty of Medicine - Ain Shams University

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Or. Amr Mohamed Al Said Kamel,** Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made the completion of this work possible.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ashraf Ahmed Abd El Hamid Abou**Slemah, Associate Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Wael Sayed Ahmed El Gharabawy**, Lecturer of Anesthesiology, Intensive care and Pain
Management Faculty of Medicine - Ain Shams University, for his
great help, active participation and guidance.

Yasmin Dbrahim El Emary

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	10
Introduction	i
Aim of the Work	15
Review of Literature	
 Pathophysiology of Pain 	16
 Anatomy of The Thoracic Wall and Breast 	32
Pecs Block I & II	51
Patients and Methods	74
Results	80
Discussion	95
Limitations	103
Conclusion	104
References	105
Archie Summeru	

List of Tables

Table No.	Title	Page No.
Table (1):	Systemic responses to surgery	20
Table (2):	Principal hormonal responses to surge	
Table (2):	Nerves relevant to pecs block	•
Table (4):	Muscles relevant to Pecs	
Table (5):	Vessels relevant to pecs and serratus	
Table (6).	blocks	-
Table (6):	Peripheral nerve blocks used for ana	
	of chest wall	_
Table (7):	Technique	54
Table (8):	Technique.	58
Table (9):	Optimizing sonoanatomy visualization	n 65
Table (10):	Optimizing needle imaging with ultrase	ound68
Table (11):	Safety tips during ultrasound-guided	nerve
	blocks	72
Table (12):	Optimizing local anesthetic deposition	n 73
Table (13):	Patients' characteristics	80
Table (14):	The Mean Inhalational anesthetic mi	
	alveolar concentration (MAC) in	
T 11 (15)	groups.	
Table (15):	Mean heart rate (Beats/min) in groups	
Table (16):	Mean noninvasive arterial blood pre	
1 able (10).	(mmHg) in both groups	
Table (17):	The mean Intraoperative fer	
	increments consumed in Ug/kg	•
Table (18):	The Mean NPRS in both groups	90
Table (19):	The Mean number of patients requ	uiring
	rescue Nalbuphine analgesia in both gr	oups92
Table (20):	Incidence of adverse effects in both gr	oups 94

List of Figures

Fig. No.	Title Po	ige No.
Figure (1):	The Wong-Baker FACES Pain So utilizes a series of pictures of fa corresponds to pain severity	ices
Figure (2):	The three-item scale. Items from Brief Pain Inventory"	the
Figure (3):	Skeleton of the thoracic wall	32
Figure (4):	The external and internal intercosmuscles of the thoracic wall	
Figure (5):	View of the inner aspect of the thorawall, featuring internal intercost transversus thoracis and diaphragm	als,
Figure (6):	Arterial blood supply of the thoracic w	
Figure (7):	Typical spinal nerve	
Figure (8):	Anterior thoracic wall muscles	
Figure (9):	Anterior thoracic wall muscles relev	
rigure (9):	to thoracic wall blocks	
Figure (10):	Muscles That Position the Pector Girdle	oral
Figure (11):	Cut section in the anatomical ladma involved in Pecs block. pectoral reg	rks
	(Blanco, 2011)	39
Figure (12):	Muscles of the trunk	41
Figure (13):	Pectoralis major muscle has b extracted forbetter viewing	
Figure (14):	Boundaries of the breast	
Figure (15):	Axillary artery and its branc (anterior view of the left axillary region	
Figure (16):	Arterial supply of the breast	
Figure (17):	Schematic representation of the	
3	plexus brachialis	

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (18):	Left: innervation of the thoracimuscles at the axillary level; branches of the spinal innervation chest wall	right:	49
Figure (19):	Algorithm for the selection of reblock method in breast surgery	_	52
Figure (20):	Pec 1 block-probe and needle place	ment	56
Figure (21):	Sonoanatomy Pecs I		57
Figure (22):	Pecs 2 block-probe and needle place	ement	59
Figure (23):	Sonoanatomy Pecs 2		60
Figure (24):	Pecs block		61
Figure (25):	Left: Cut section Pectoral muscle and pleura. Right: Ultrasound ima performing combined Pecs-1 and blocks in single injection technique	ages of Pecs-2	
Figure (26):	Transducer position for Pecs blocks		
Figure (27):	The median nerve, A: cross s		02
	(target structure out of planultrasound beam; yellow arrowhed longitudinal section (target structure plane to ultrasound beam; arrowheads)	ne of ad). B: ture in red	66
Figure (28):	A: proximal nerve appearance interscalene groove (yellow indicate nerve roots) with echogenic connective tissue. B: distal in the supraclavicular foss arrows indicate brachial plexus the "honorycomb" appearance.	arrows little More a (red runks)	e a
E: (00)	with "honeycomb" appearance		
Figure (29):	The supraclavicular brachial plexusurrouding vasculature		

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (30):	Algorithm: the primary purpose suggested routine use of stimulation with UGRA is for purpose of safety monitoring, than nerve localization.	nerve or the rather	70
Figure (31):	Fine adjustment of the probe necessary to optimize echo return the target structure and enhance resolution (yellow arrowheads in sciatic nerve at the popliteal fossa)	tilt is n from image ndicate	
Figure (32):	Position		
Figure (32):	Bar chart representing the mean		
rigure (55).	studied patients in both groups	_	
Figure (34):	Bar chart Representing the mean class in both groups	n ASA	
Figure (35):	Bar chart representing the duration of surgery in both groups	mean	
Figure (36):	The Mean Inhalational ane minimal alveolar concentration (M both groups	sthetic (AC) in	
Figure (37):	The mean heart rate (Beats/min) i		09
rigure (01).	groups		85
Figure (38):	The MABP (mmHg) in both groups		
Figure (39):	Comparison between groups as r the intraoperative fe	egards	
	requirements	•	89
Figure (40):	The Mean NPRS in both groups.		

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (41):	rescue Nalbuphine analges:	ia in both
Figure (42):	Bar chart representing the incidence of adverse effects in both groups	

List of Abbreviations

Full term Abb. ACS American cancer society ACTH Adrenocorticotrophic hormone ADH Antidiuretic hormone AVP Arginine vasopressin BCS.....Breast cancer surgery BPI..... The brief pain inventory CNS Central nervous system CoxCyclooxygenase CRH.....Corticotrophin-releasing hormone DVT.....Deep venous thrombosis FSH.....Follicle stimulating hormone GAGeneral anesthesia IL Interleukins LH.....Lutinizing hormone MAC..... Minimal alveolar concentration MAC Monitored anesthesia care NPRS The numerical pain rating scale PECSB......Pectoralis major block PG.....Prostaglandins PONVPostoperative nausea and vomiting SSR Surgical stress response TIVA.....Total intravenous anesthesia TPVB.....Thoracic paravertebral block TSH......Thyroid stimulating hormone VASVisual analogue scale VRS The verbal rating scale

INTRODUCTION

reast cancer is the top cancer in women both in the developed and the developing world. The incidence of breast cancer is increasing in the developing world due to increase life expectancy, increase urbanization and adoption of western lifestyles (Anderson et al., 2008).

According to the American Cancer Society (ACS), breast cancer makes up 25 percent of all new cancer diagnoses in women globally. In 2012, nearly 1.7 million new cases were diagnosed worldwide. Survival rates vary worldwide but are improving overall. In countries with advanced care, the rate is 80 to 90 percent for those with a first-stage diagnosis, and 24 percent if diagnosis occurs at a later stage (American Cancer Society, Cancer Facts & Figures 2018).

Breast cancer is not always a systemic disease, and mastectomy has cured a significant number of patients (Osborne et al., 1990).

In describing how patients feel after surgery, Armitage stated that "slapping the patient on the face and telling him or her that it's all over is a complete inversion of the truth" because as far as the patient is concerned, "it is often just the beginning." Although the current armamentarium of analgesic drugs and techniques is impressive, effective management of postoperative pain still poses some unique challenges in the

ambulatory setting. The increasing number and complexity of operations being performed on an outpatient basis has presented anesthesia practitioners with new challenges with respect to acute pain management. Outpatients undergoing daycare procedures require a perioperative analgesic technique that is effective, has minimal side effects, is intrinsically safe, and can be easily managed away from the hospital or surgery center (Armitage, 1989).

Peripheral nerve blocks and wound infiltration with local anesthetics are commonly used adjuvants to both monitored anesthesia care (MAC) and general anesthetic techniques because they can provide intraand postoperative analgesia. More effective pain relief in the early postoperative period from the residual sensory block provided by regional anesthesia can facilitate the recovery process, enabling earlier ambulation and discharge home (i.e., fast-tracking). The use of regional anesthetic techniques also decreases the incidence of postoperative nausea and vomiting and thereby decreases the incidence of prolonged recovery stays and unanticipated hospital admissions related to intractable emetic symptoms. Although additional clinical studies are needed to identify the most cost-effective anesthetic techniques for ambulatory surgery, it would seem that peripheral nerve blocks with sedation (i.e., MAC techniques) offer significant advantages over central neuraxis blockade and general anesthesia in the ambulatory setting (Vloka et al., 1997).

Although the primary role of the stress response after surgery is to augment the healing process, either overactivity or underactivity of host-defense mechanisms paradoxically may lead to negative consequences. For instance, the surgical stress response may provide optimal conditions for persistence of residual minimal malignant disease after surgery. Surgery has been suggested to accelerate the development of preexisting micro metastases and to promote the establishment of new metastases (Ben-Eliyahu, 2003).

A wealth of basic science data supports the hypothesis that the surgical stress response increases the likelihood of cancer dissemination and metastasis during and after cancer surgery. Anesthesia might decrease recurrence after cancer surgery. Other factors such as blood transfusion, temperature regulation, and statin administration may also affect long-term outcome (Gottschalk et al., 2010).

Regional anesthesia reduces the stress response caused by surgery, which is believed to be a mediator of postoperative immunosuppression. Regional anesthesia attenuates surgical stress response by blocking afferent neural transmission. This prevents noxious afferent input from reaching the central nervous system (Liu et al., 2004).

Most regional anesthesia in breast surgeries is performed as postoperative pain management under general anesthesia, and not as the primary anesthesia. Regional anesthesia has very

few cardiovascular or pulmonary side-effects, as compared with general anesthesia (Moon et al, 2017).

Regional anesthesia techniques, such as thoracic epidural block, thoracic paravertebral block (TPVB), and intercostal nerve block, have been used in anesthesia and/or analgesia in breast surgery. However, these invasive regional techniques lead to some complications during the perioperative period; therefore, they are not appropriate on a day-stay basis (Moon et al, 2017).

The pectoral nerves block (Pecs block) is a novel superficial nerve block. alternative to neuraxial paravertebral blocks, which provides good analgesia during and after ambulatory breast surgery. Pecs block has been performed as postoperative pain management and not as a primary anesthesia in breast surgeries under general anesthesia (GA). However, when conducted in combination with monitored anesthesia care (MAC), it could suffice as primary anesthesia. Pectoral nerve block is a relatively new technique, with fewer complications than other regional anesthesia (Moon et al, 2017).

AIM OF THE WORK

In a selected category of patients undergoing mastectomy for breast cancer, we compare the intraoperative anesthetic requirements and postoperative analgesic requirements in patients receiving PECS block type I besides general mode of anesthesia, to patients undergoing general mode of anesthesia, hence assessing the anesthetic and analgesic role of PECS block type I in mastectomy. Thus, the capability of PECS block type 1 of providing a good coverage for surgical incisions involving cancer breast simple mastectomies shall be targeted as well.