Outcome of Continuous versus Intermittent Application of Meropenem In Critically Ill Patients with Septic Shock.

Thesis

Submitted for partial fulfillment of the MasterDegree in Intensive Care

Karim Mohamed Megahed

M.B., B.Ch (Alazhar University, 2012) M.B., B.Ch, 2015

Under Supervision of:

Prof.Dr. Azza Atef Abd Alalim

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

Dr. Walid Hamed Nofal

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

Dr. Rehab Abd Elfattah Abd Elrazik

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Acknowledgment

Praise to "Allah", the Most Gracious and the Most Merciful Who Guides Us to the Right Way.

I would like to express my deep gratitude to: Prof. Dr. Azza Atef Abd Alalim, professor of Anesthesia, Intensive Care and Pain Management, for her great support, her precious guidance, wise instructions, meticulous supervision, valuable experience and time, endless cooperation and true concern to accomplish this work in the best possible image. For providing me the experience, cooperation and close supervision throughout the work

I would like also to thank **Dr. Walid Hamed Nofal**, Lecturer of Anesthesiology, Intensive Care and Pain Management, who gave me much of his effort, experience and close supervision throughout the work. Without his continuous help this work would never have been accomplished.

I would like also to thank **Dr. Rehab Abd Elfattah Abd Elrazik**, Lecturer of Anesthesia, Intensive Care and Pain Management, who gave me much of her effort, experience and close supervision throughout the work. Without her continuous help this work would never have been accomplished

I would like to extend my gratitude to all patients treated in this work and to my colleagues in the Critical Care Medicine Department, at Damanhour Medical National Institute for the great help which they have offered me.

My great appreciation and gratitude to my father (my God have mercy on him), my mother, my wife and my sisters for their care and love.

My appreciation is extended to all those who shared either practically or morally in the accomplishment of this work.

Karim Mohamed Megahed

List of Contents

	Page
Acknowledgment	_
List of Abbreviations	i
List of Figures	ii
List of Tables	V
Introduction	1
Aim of The Work	3
Definition of sepsis	4
Pathophsiology and systemic effect of sepsis	9
Management of sepsis	17
Antibiotics dosing in critical illness	31
Pharmacology of meropenem	54
Patients and Methods	62
Results	67
Discussion	85
Recommendations	91
Summary	93
Conclusion	96
References	98
Appendix	114
Arabic Summary	

List of Abbreviations

ABG : Arterial blood gases

ACCP : American college of chest physicians

ACTH : Adrenocorticotropic hormone

APACHE II: Acute Physiologic and Chronic Health

Evaluation II

aPTT : Activated partial thromboplastin time ARDS : Acute respiratory distress syndrome

CBC : Complete blood count

CDAD : Clostridium difficile associated diarrhea

CI: Continuous infusionCRP: C- Reactive proteinC/S: Culture and sensitivityCT: Computed tomography

CVP : Central venous pressure

ECG : Electrocardiogram

ESBL : Extend Spectrum B-Lactamase

ESICM : European Society of Intensive Care Medicine

Fio2 : Fraction of inspired oxygen

GCS : Glasgow coma scale

GI : Gastrointestinal

HAP : Hospital acquired pneumonia

HBF : Hepatic blood flow

HCPs : Health care professionals

IB : Intermittent bolusICUs : Intensive care units

INR : International normalized ratio

MAP : Mean arterial pressure

MIC: Minimum inhibitory concentration of

pathogen

MODS : Multiple organ dysfunction syndrome

List of Abbreviations (Cont.)

NE : Norepinephrine

NIV : Non invasive mask ventilationNMBs : Neuromuscular blocking agentPaco2 : Arterial carbon dioxide tension

Pao2 : Arterial oxygen tension

PD: Pharmocodynamic

PEEP : Positive end expiratory pressure

PK : Pharmocokinetic

rhAPC : Recombinant human activated protein C

SBP : Systolic blood pressure

SCCM : Society of critical care medicine SCVO2 : Central venous oxygen saturation

SIRS : Systemic inflammatory response syndrome

SIS : Surgical infection society

SOFA : Sepsis-related Organ Failure Assessment

SSC : Surviving Sepsis Campaign

VAP : Ventilator associated pneumonia

WBC : White blood cell count

DIC : Disseminated intravascular coagulopathy

TNF : Tumor necrosis factor

HAP : Hospital acquired pneumonia

RR : Risk ratio

PD : Pharmacodynamic

FT% : Free drug concentration time percentage

NO : Nitric oxide

List of Figures

Fig.	Title	Page
1	Comparison between the two studied groups regarding age	67
2	Comparison between two the studied groups regarding sex	68
3	Comparison between the two studied groups according to site of infection	69
4	Comparison between the two studied groups according to the type of infecting organism	71
5	Comparison between the two studied groups according to APACHE II score on admission	72
6	Comparison between the two studied groups according to SOFA score on start of therapy	74
7	Comparison between the two studied groups according to SOFA score at end of meropenem therapy	74
8	Comparison between the two studied groups according to mean white blood cell count (WBCs).	76
9	Comparison between the two studied groups according to C-reactive protein(mg/l).	79
10	Comparison between the two studied groups according to clinical outcome	80
11	Comparison between the two studied groups according to Culture and sensitivity (C/S) at end of therapy	82
12	Comparison between the two studied groups according to meropenem regimen related length of ICU stay	83
13	Comparison between the two studied groups according to mortality (28 days).	84

List of Tables

Table	Title	Page
1	Goals during the first 6 hrs of resuscitation	19
2	Comparison between the two studied groups	67
	regarding age	
3	Comparison between the two studied groups	68
	regarding sex	
4	Comparison between the two studied groups	69
	according to site of infection	
5	Comparison between the two studied groups	70
	according to the type of infecting organism	
6	Comparison between the two studied groups	71
	according to APACHE II score on admission	
7	Comparison between the two studied groups	73
	according to SOFA score on start and at end	
	ofmeropenem therapy	
8	Comparison between the two studied groups	75
	according to mean white blood cell count	
	(WBCs).	
9	Comparison between the two studied groups	77
	according to C-reactive protein(mg/l).	
10	Comparison between the two studied groups	79
	according to clinical outcome	
11	Comparison between the two studied groups	81
	according to Culture and sensitivity (C/S) at	
	end of therapy	
12	Comparison between the two studied groups	82
	according to meropenem regimen related	
	length of ICU stay	
13	Comparison between the two studied groups	84
	according to mortality (28 days).	

Introduction

Severe infections in critically ill patients and increasing antibiotic resistance are major healthcare problems affecting morbidity and mortality in the intensive care unit. Antibacterial drug discovery and development have slowed considerably in recent years (**Devasahayam et al., 2010**) (**Livermore et al., 2011**).

The effort to maximize antibiotic activity has led in recent years to the interest for optimal dosing based on pharmacodynamic and pharmacokinetic properties of antibiotics (Roberts et al., 2008).

Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections. It is abeta-lactam and belongs to the subgroup of carbapenem similar to imipenem and ertapenem. It penetrates well into many tissues and body fluids including the cerebrospinal fluids, biles, heart valves, lung, and peritoneal fluid. (Edwards et al., 1989). It is bactericidal except against listeria monocytogenes where it is bacteriostatic. It inhibits bacterial wall synthesis like other beta-lactam antibiotics. In contrast to other beta-lactams, it is highly resistant to degradation by beta-lactamases or cephalosporinases. It is metabolized in the liver to open beta-lactam form (inactive). Approximately 70% of the intravenously administered dose is recovered as unchanged meropenem in the urine over 12 hours, after which little further urinary excretion is detectable(Yeung et al.,2012).

Meropenem have broad spectrum activity against Gramnegative (including Pseudomonas) and Gram -positive organisms and anaerobic bacteria, it remains a suitable choice for treatment of severe infections in critically ill patients. It is currently established that meropenem, like other β -lactam antibiotics, displays time-dependent bactericidal activity and the percentage of the dosing interval that free drug concentrations remain above the minimum inhibitory concentration of pathogen (%fT> MIC) is the most important parameter for predicting their antibacterial efficacy(Craig et al., 2003)(Drusano et al., 2003).

Meropenem concentrations must be maintained above the minimum inhibitory concentration for the set percent of a pharmacokinetics dosing interval. However, the meropenem seem to differ in critically ill patients compared with healthy(Drusano et al.,2003)(Turnidge et al.,1998). The maximum killing effect of β-lactams is reached at four to five times the MIC with higher concentration contributing further increasing the antimicrobial to effect(McKinnon et al.,2008).It can be presumed that intermittent infusion recommended by pharmaceutical companies results in high peak concentration and low through concentration and can cause reduced efficacy. Furthermore, pathophysiological changes that occur in seriously ill patients with sepsis often affect volume of distribution, drug clearance and altered pharmacokinetic recommendations making these potentially parameters inappropriate (Roberts et al., 2008) (Novelli et al., 2005). The use of continuous administration of β-lactams was studied in some trials, but strong evidence of clinical efficacy of this alternative is lacking (Jaruratanasirikul et al.,2005) (Roberts et al., 2007).

Aim of The Work

This work aimed to:

Study the outcome of continuous versus intermittent application of meropenem in critically ill patients with septic shock.

Definition of sepsis:

Sepsis is a clinical syndrome that complicates severe infection. It is characterized by systemic inflammation and widespread tissue injury. In this syndrome, tissues remote from the original insult display the cardinal signs of increased inflammation including vasodilatation. microvascular permeability and leukocytes accumulation. Although inflammation is an essential host response, current beliefs regarding the onset and progression of sepsis center upon a "dysregulation" of the normal response with a and uncontrolled release of proinflammatory massive mediators creating a chain of events that leads to widespread tissue injury(Neviere, 2013).

Systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis and septic shock were initially defined in 1991 by a consensus panel convened by the American College of Chest Physicians (ACCP) and Society of Critical Care Medicine (SCCM) (Arise, 2007). These definitions were reconsidered in 2001 during an International Sepsis Definitions Conference that included representatives from the ACCP, SCCM, American Thoracic Society, European Society of Intensive Care Medicine and Surgical Infection Society (SIS) and again in 2012 by the SCCM and ESICM(Levy et al., 2003) (Dellinger et al., 2012). A practical modification of the definitions has been published, which provides exact hemodynamic definitions for sepsis and septic shock. The definitions provided below are based upon these resources and represent a continuum of SIRS through

multiple organ dysfunction syndrome (MODS)(Annane et al., 2005).

Systemic inflammatory response syndrome: is a widespread inflammatory response that may or may not be associated with infection. The presence of two or more of the following criteria (one of which must be abnormal temperature or leukocyte count) defines SIRS(Goldstein et al., 2005):

- a) Core temperature (measured by rectal, bladder, oral, or central probe) of >38.5°C or <36°C.
- b) Tachycardia, defined as a mean heart rate more than two standard deviations above normal for age, or for children younger than one year of age, bradycardia defined as a mean heart rate <10th percentile for age.
- c) Mean respiratory rate more than two standard deviations above normal for age or mechanical ventilation for an acute pulmonary process.
- d) Leukocyte count elevated or depressed for age, or >10 percent immature neutrophils.
- **Infection:**Infection is a microbial phenomenon characterized by an inflammatory response to the presence of microorganisms or the invasion of normally sterile host tissue by those organisms.
- **Bacteremia:** Bacteremia is the presence of viable bacteria in the blood.
- **Sepsis:** is the clinical syndrome that results from a dysregulated inflammatory response to an infection(**Dellinger et al., 2012**).

Diagnostic criteria for sepsis includethe following:

General variables

- Temperature >38.3 or <36°C.
- Heart rate >90 beats/min or more than two standard deviations above the normal value for age.
- Tachypnea, respiratory rate >20 breaths/min.
- Altered mental status.
- Significant edema or positive fluid balance (>20 mL/kg over 24 hours).
- Hyperglycemia (plasma glucose >140 mg/dL or 7.7 mmol/L) in the absence of diabetes.

Inflammatory variables

- Leukocytosis (WBC count >12, 000 cells/mm3) or leukopenia (WBC count <4000 cells/mm3).
- Normal WBC count with greater than 10 percent immature forms.
- Plasma C-reactive protein more than two standard deviations above the normal value.
- Plasma procalcitonin more than two standard deviations above the normal value.

Hemodynamic variables

Arterial hypotension (systolic blood pressure SBP <90 mmHg, MAP <70 mmHg, or an SBP decrease >40 mmHg in adults or less than two standard deviations below normal for age).

Organ dysfunction variables

- Arterial hypoxemia (arterial oxygen tension [PaO₂]/fraction of inspired oxygen [FiO₂] <300).
- Acute oliguria (urine output <0.5 mL/kg/hr for at least two hours despite adequate fluid resuscitation).
- Creatinine increase >0.5 mg/dL or 44.2 micromol/L.
- Coagulation abnormalities (international normalized ratio [INR] >1.5 or activated partial thromboplastin time [aPTT] >60 seconds).
- Ileus (absent bowel sounds).
- Thrombocytopenia (platelet count <100, 000 micro/L⁻¹).
- Hyperbilirubinemia (plasma total bilirubin >4 mg/dL or 70 micromol/L).

Tissue perfusion variables

- Hyperlactatemia (>1 mmol/L).
- Decreased capillary refill or mottling.
- oliguria

Severe sepsis:Severe sepsis refers to sepsis-induced tissue hypoperfusion or organ dysfunction with any of the following thought to be due to the infection(**Dellinger et al., 2012**):

- Sepsis-induced hypotension.
- Lactate above upper limits of laboratory normal.
- Urine output <0.5 mL/kg/hr for more than two hours despite adequate fluid resuscitation.
- Acute lung injury with PaO₂/FIO₂ <250 in the absence of pneumonia as infection source.

- Acute lung injury with PaO₂/FIO₂ <200 in the presence of pneumonia as infection source.
- Creatinine >2 mg/dL (176.8 micromol/L).
- Bilirubin >2 mg/dL (34.2 micromol/L).
- Platelet count <100, 000 microL⁻¹.
- Coagulopathy (INR >1.5)..

Septic shock: Septic shock is defined as sepsis-induced hypotension persisting despite adequate fluid resuscitation, which may be defined as infusion of 30 mL/kg of crystalloids. Septic shock is a type of vasodilatory or distributive shock. In other words, it results from a marked reduction in systemic vascular resistance, often associated with an increase in cardiac output (**Dellinger et al., 2012**).

Multiple organ dysfunction syndrome (MODS): refers to the presence of altered organ function in an acutely ill patient such that homeostasis cannot be maintained without intervention. The MODS is classified as either primary or secondary (Bone et al., 1992).

- **Primary MODS:** is the result of a well-defined insult in which organ dysfunction occurs early and can be directly attributable to the insult itself (e.g., renal failure due to rhabdomyolysis).
- **Secondary MODS:** is organ failure not in direct response to the insult itself, but as a consequence of a host response.