Role of Uterine Artery Embolization using Embolic Microspheres in Treatment of Uterine Fibroid

Thesis

Submitted for Partial Fulfillment of Master Degree in Radiodiagnosis

By

Bahaa El-Din Sayed Tawfik
M.B.B.Ch.

Under Supervision of

Prof. Dr. Reem Hassan Bassiouny

Professor of Radiology
Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed Samy Elshimy

Lecturer of Radiology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Reem**Thassan Bassiouny, Professor of Radiology, Faculty of Medicine, Ain Shams University, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed**Mohamed Samy Elshimy, Lecturer of Radiology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Bahaa El-Din Sayed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vii
Introduction	1
Aim of the Work	11
Review of Literature	
Anatomy of the Uterus and Its Arterial Supply.	12
Pathology of Uterine Fibroids	33
Imaging of Uterine Fibroids	43
Treatment Options of Uterine Fibroids	59
Technique of Uterine Artery Embolization	62
Patients and Methods	86
Results	93
Illustrative Cases	99
Discussion	114
Summary and Conclusion	118
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Features To Be Reported in Uterine Leiomyoma	
Table (2):	Contra-indications of Uterine Embolization	
Table (3):	Showing points of UFS questions score	
Table (4):	Showing points of HRQOL ques and score	
Table (5):	Showing points of HRQOL ques and score	
Table (6):	Baseline characteritics of fibroid before embolization	_
Table (7):	Showing mean UFS score before embolization	
Table (8):	Showing mean HRQOL score be after embolization	
Table (9):	Showing mean volume of the of fibroid before and after embolization	

List of Figures

Fig. No.	Title Page No.
Figure (1):	Sagittal section in the female pelvis
Figure (2):	Layers of the uterus and uterine blood supply
Figure (3):	Uterine dimensions
Figure (4):	Normal position and internal structure of the uterus on endovaginal ultrasonography
Figure (5):	Endovaginal ultrasonography 16
Figure (6):	CT of the uterus
Figure (7):	T1-weighted images of the uterus and cervix 18
Figure (8):	T2-weighted images of the uterus and cervix 20
Figure (9):	Palmate folds
Figure (10):	Nabothian cysts
Figure (11):	T1 post-contrast images of the uterus and cervix
Figure (12):	Left internal iliac artery bifurcation
Figure (13):	Trifurcation of the right internal iliac artery 24
Figure (14):	Absence of the right internal iliac artery 24
Figure (15):	The uterine artery (UA) arising as the first branch of the internal iliac artery
Figure (16):	Cervicovaginal (CV), vesical (V), and uterine (UA) arteries arising from the right genitourinary (GU) artery as a common trunk
Figure (17):	Segments of the uterine artery
Figure (18):	Absent uterine arteries

Fig. No.	Title	Page No.
Figure (19):	Absent uterine arteries with ovariate to the uterus	
Figure (20):	Transverse anastomosis between (LUA) and right (RUA) uterine arte the retrogradeopacification of the levia a utero-ovariananastomosis (OA).	ries. Note eft artery
Figure (21):	Aberrant right ovarian artery	30
Figure (22):	Utero-ovarian anastomosis	31
Figure (23):	The obturator artery.left external ill	ac artery 32
Figure (24):	Gross pathology of the uterine fibroi	ds34
Figure (25):	Arterial supply of a leiomyoma	38
Figure (26):	Arterial pedicle supplying pedunculated subserval fibroid tum	•
Figure (27):	Bicornate uterus with a single in fibroid tumor (F) with exclusive sup fibroid from the left uterine artery	ply to the
Figure (28):	Microscopic appearance of leiomyom	ıa 39
Figure (29):	Submucosal fibroid on ultrasound	43
Figure (30):	Cystic degeneration in an in- leiomyoma on TAUS	
Figure (31):	Doppler ultrasound of fibroid tumor	45
Figure (32):	CT appearance of leiomyomas	46
Figure (33):	Cervical fibroid co-existing with mucosal fibroid	
Figure (34):	MRI appearance of non-degleiomyomas	

Fig. No.	Title	Page No.
Figure (35):	Hyaline degeneration in Leiomyoma	a50
Figure (36):	Leiomyomas with cystic degeneration	on50
Figure (37):	Leiomyomas with cystic degeneration	on51
Figure (38):	Leiomyomas with red degeneration.	52
Figure (39):	Cellular leiomyoma	53
Figure (40):	Diffuse leiomyomatosis	53
Figure (41):	Lipoleiomyoma	54
Figure (42):	Uterine leiomyosarcoma	55
Figure (43):	Focal adenomyosis	55
Figure (44):	Focal myometrial contraction	58
Figure (45):	Viable cervical leiomyoma after Udifferent patients	
Figure (46):	UAE in adenomyosis	65
Figure (47):	Catheters used in UFE	69
Figure (48):	Pruned tree appearance of the uter before and after embolization	
Figure (49):	Spasm of the uterine artery comparant normal caliber of the artery	
Figure (50):	Classification of embolic materials UFE.	
Figure (51):	Steps to cut Gelfoam	76
Figure (52):	PVA vial	76
Figure (53):	PVA particles magnified	77
Figure (54):	PVA suspension	78

Fig. No.	Title	Page No.
Figure (55):	Embosphere syringes and vials	79
Figure (56):	Microscopic picture of Embosphere	80
Figure (57):	Embogold syringe	82
Figure (58):	Histological sections stained with demonstrating the elongated and shape of Contour SE	deformed
Figure (59):	Comparison of the compressible embolization microspheres	
Figure (60):	Microscopic picture of BeadBlock	84
Figure (61):	Embozene syringes	85
Figure (62):	Graphical representation of the fibroid location.	
Figure (63):	Graphical representation of the mbefore and after embolization	
Figure (64):	Graphical representation of the HRQOL before and after embolization	
Figure (65):	Graphical representation of the value the dominant uterine fibroid before embolization.	and after
Figure (66):	Sagittal T2 and coronal T2 of the pe	lvis 99
Figure (67):	DSA on right uterine artery, lef artery and from both of them	
Figure (68):	Sagittal T2 and coronal T2 of the pe	lvis 101
Figure (69):	Sagittal MRI of the pelvis	102
Figure (70):	DSA on both right uterine artery uterine artery	

Fig. No.	Title	Page No.
Figure (71):	Sagittal MRI of the pelvis regression of the anterior uterine w measuring 6.5 X 5.5 X 7 cm.	all fibroid
Figure (72):	Sagittal MRI of the pelvis	105
Figure (73):	DSA on right uterine artery	106
Figure (74):	Sagittal MRI of the pelvis	107
Figure (75):	PAUS showing anterior uteri isoechoic well circumscribed fibr measuring 3.5 X 5 X 4 cm	oid mass
Figure (76):	DSA on right uterine artery, lef	
Figure (77):	PAUS showing regression of the wall fibroid mass measuring now a 2.5 X 2 cm on its AP, TR and CC directions.	about 3 X
Figure (78):	TVUS showing posterior uter isoechoic well circumscribed fibr measuring 6 X 7 X 5.5 cm	oid mass
Figure (79):	DSA on left uterine artery, righ	
Figure (80):	TVUS showing regression of the wall fibroid mass measuring now 3 cm.	X 3 X 2.5

List of Abbreviations

Abb.	Full term	
aPVA	Acrylamido Polyvinyl Alcohol	
HRQOL	Health Related Quality OF Life	
<i>IUCD</i>	Intra Uterine Contraceptive Device	
nsPVA	Non spherical Polyvinyl alcohol	
PVA	Polyvinyl alcohol	
sPVA	spherical Polyvinyl alcohol	
<i>TAGM</i>	Trisacryl Gelatin Microspheres	
<i>UAE</i>	Uterine Artery Embolization	
<i>UFE</i>	Uterine Fibroid Embolization	
<i>UFS</i>	Uterine Fibroid Symptoms	

Abstract

It deserves our attention to its value and efficacy for the sake of the patient as a minimally invasive procedure providing better quality of life.

Uterine artery embolization using Embosphere and Embozene microspheres have the same symptomatic effect and volume reduction of the dominant fibroid after three months follow up in compare with using Embosphere alone or with spherical polyvinyl alcohol particles.

Keywords: Trisacryl Gelatin Microspheres - UAE Uterine Artery Embolization - UFE Uterine Fibroid Embolization

INTRODUCTION

Iterine Artery Embolization (UAE) is considered now a well-established intervention for treatment of symptomatic fibroids with clinical efficacy comparable with traditional surgical treatment (Gupta et al., 2014).

UAE is now frequently proposed as an organ preserving treatment to the younger women willing to conceive. It has been proven, in a large cohort of women wishing to conceive before embolization, that pregnancies can occur after UAE (Pron et al., 2005).

The first generation of microparticles is non-spherical polyvinyl alcohol particles (ns-PVA, Boston Scientific, Natick, MA, USA and Ivalon, Cook Medical, Bloomington, IN, USA) which showed favorable results but the non-spherical shape had some disadvantages and the following calibrated spheres has been developed. Currently, there are five types of microspheres available, tris-acryl gelatin microsphere (ex. Embosphere), Acrylamido polyvinyl alcohol micro-sphere (ex. Bead Block), polymer Polyzene-F (ex. Embozene), Polyethylene glycol microsphere (ex. HydroPearl) and spherical polyvinyl alcohol microsphere (Contour SE) (Rasuli et al., 2008; Siskin et al., 2008; Spies et al., 2005).

Spherical PVA is no longer available and EmboGold is no longer recommended for UAE by the manufacturers (Champaneria et al., 2014).

The most commonly used microspheres in clinical practice are Embospheres, Embospheres and Bead Block. However, the potential difference between these microspheres has not been studied extensively, and there is still no evidence in favour of any of these microspheres (Champaneria et al., 2014).

Although ns-PVA has the widest body of experience and is currently in use, it can cause unpredictable embolization and variable levels of arterial occlusion (*Pelage et al.*, 2002).

Some studies have suggested that ns-PVA particles may lodge in the perifibroid vascular plexus and calibrated microspheres are preferred for deeper penetration into the fibroid itself (Chua et al., 2005).

AIM OF THE WORK

The study aims to evaluate the effect of uterine artery embolization using Trisacryl Gelatin Microspheres (Embosphere) and Polyphosphazene-Hydrogel Microspheres (Embozene) microspheres in treatment of patients with uterine fibroid.