بسر الله (ارسمس الرسميع

A Comparative Study of Residual Volume in Donors for Living Donor Liver Transplantation

Presented by

Dr. Nourhan Muhammad Diaa El Din Asaad

(MBBCh Ain Shams University)

Supervised by:

Prof. Dr. Hassan Zakaria Shaker

Professor of General Surgery Faculty of Medicine Ain Shams University

Prof. Dr. Hany Saeed Abd El Baset

Professor of General Surgery Faculty of Medicine Ain Shams University

Dr. Muhammad Abd El Satar Abd El Hamid

Lecturer of General Surgery Faculty of Medicine Ain Shams University

Acknowledgement

I wish to express my highest appreciation and sincere gratitude to Prof. Dr. H.Z. Shaker, Professor of General Surgery, Ain Shams University, for his kind supervision and valuable advice.

I would like to express my deepest thanks to Prof. Dr. H.S. Abd El Baset, Professor of General Surgery, Ain Shams University, whose close supervision, continuous effort, patience, statistical advice and wise guidance were most helpful in performing this work.

I am deeply grateful to Dr. M.A. Abd El Hamid, Lecturer of General Surgery, Ain Shams University, for his hopeful beginning and continuous guidance.

I would like also to thank Prof. Dr. M. Fathi, Dean of Liver and Tropical Diseases Institute and Professor of Surgery, Shams General Ain University, encouragement and continuous advice and Prof. Dr. M. Professor of General Bahaa. Surgery, Ain Shams University, Pro. Dr. M. Radi, Dr. A. Kamal, Dr. M. Moustafa, Dr. J. Kerolos, Dr. A. Aadel, Dr. A. Hisham and all transplantation team in Ain Shams Specialized Hospital For their support and encouragement.

I want to express my particular thanks to Dr. M. Ashri, Lecturer of Physiology, Cairo University and Dr. M. Aiashi, Lecturer of Anaesthia, Cairo University for their valuable guidance and fruitful evaluation of the statistical data.

I would like also to express my thanks to Dr. I.A. Abbas, out-patients clinics manager, Dr. H.M. Ibrahim, consultant of general surgery, Dr. M.K. Fakhry, Specialist of General Surgery, for their continuous teaching, encouragement and support.

I would also like to express my thanks to Dr. A. Abo El Alaa, Head of Surgery Dep. and all my colleagues in surgery Department in Ain Shams General Hospital.

Dedication

For my family for bearing me and encouraging me all the time.

For my friends who stood by my side.

For my colleagues who supported me.

List of Content

Acknowledgement
Dedication
List of Abbreviations i
List of Figure iv
List of Table vi
Introduction
Aim of Work
Review of Literature 5
Chapter 1: Liver Transplantation
Chapter 2: Living Donor Liver Transplantation35
Chapter 3: Donor Safety48
Patients and methods57
Results63
Discussion81
Summary and Conclusion84
References
Arabic Summary

List of Abbreviations

AFP : Alpha fetoprotein

AIDS : Acquired immune deficiency syndrome **ALDLT** : Adult living donor liver transplantation

ALT : Alanine transaminase

APCR : Activated protein C resistance

AST : Aspartate transaminase

CA : Cancer antigen

CAT : Computerized axial tomography

CCA : Cholangiocarcinoma
 CD : Cluster of differentiation
 CEA : Carcinoembrionic antigen
 CHA : Common hepatic artery

CK : Creatine kinaseCMV : Cytomegalovirus

CNS : Central nervous system

COPD : Chronic obstructive pulmonary disease

CR : Chronic rejection

CT : Computed tomography

CUN : Clinica Universitaria de Navarra

DCP : Des-γ-carboxy prothrombin

DD : Diseased donor

DDLT : Diseased donor liver transplantation

DFS : Disease-free survivalDNA : Deoxyribonucleic acidEBV : Epstein-Barr virus

EBV : Epstein-Barr virus **ECG** : Electrocardiogram

ENBD : Endoscopic nasobiliary drainage

ERBD : Endoscopic retrograde biliary drainage

ERCP : Endoscopic retrograde

cholagiopancreatography

ESLD : End stage liver disease

ET : Eurotransplant

FKBP : FK binding protein

FLC: Fibrolamellar carcinoma

GDA : Gastroduodenal artery

GRWR : Graft-to-recipient weight ratio

HA : Hepatic artery

HBcIgG: Hepatitis B core immunoglobulin G

HBV : Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV : Hepatitis C virus

HIV : Human immunodeficiency virus

HSV : Herpes simplex virus

IC : Intensive care

ICU : Intensive care unitIgA : Immunoglobulin AIgG : Immunoglobulin GIgM : Immunoglobulin M

IL : Interleukin

INR : International normalized ratio

IS : Immunosuppression

IV : Intravenous LBD : Left bile duct LD : Living donor

LDLT : Living donor liver transplantation

LGA : Left gastric artery
LHA : Left hepatic artery

LL : Left lobe

LPV : Left portal vein

LT : Liver transplantation mAU : Milli-arbitrary units

MELD : Model for end stage liver disease

MHV : Middle hepatic veinMMF : Mycophenolate mofetil

MRI : Magnetic resonance imagingmTOR : Mechanistic target of rapamycinOLT : Orthotopic liver transplantation

OS : Overall survival

PBC: Primary biliary cirrhosis

PCD: Post-cholecystectomy diarrhea

PCP : Pneumocystis pneumonia PHA : Posterior hepatic artery

PSC: Primary sclerosing cholangitis

PSA : Prostatic specific antigen

PT : Prothrombin time

PTBD : Percutaneous Transhepatic Biliary Drainage

PV : Portal vein

RAPV: Right anterior portal vein

RBD : Right bile duct

RFS : Recurrence-free survival

RHA : Right hepatic artery RHV : Right hepatic vein

RL : Right Lobe

RV : Residual volume
SA : Splenic artery
SD : Standard deviation

SMA : Superior mesenteric artery

3D : Three dimensional

3D-CT: Three dimensional computed tomography

T3 : Triiodothyronine

T4 : Thyroxin TP : Total protein

TSH : Thyroid stimulating hormone

TTV : Total tumor volume UAE : United Arab emirates

UCSF : University of California, San FranciscoUNOS : United Network for Organ Sharing

VR : Volume rendered

List of Figures

Fig.	Title	page
1	Splitting of liver for two recipients: one adult and one pediatric	6
2	Calculation of Different Types of MELD score	11
3	Hepatic artery thrombosis post liver transplant. A. CT areteriography abdomen with arrow showing cut off hepatic artery. B. hepatic artery Doppler showing inefficient flow	19
4	.In this post-transplant hepatic artery stenosis a focal area of increased flow and downstream turbulence corresponded to a stenosis seen on angiogram (top two images). A tardus-parvus waveform is present in the downstream arteries (bottom)	19
5	Portal vein thrombus post transplantation (the hypoechoic structure inside vessel lumen).	20
6	CT angiography showing portal vein stenosis 2 months post liver transplant with psudoaneurysmal dilatation of the intrahepatic portion of portal vein	20
7	Anastomotic biliary stricture with small leak in 47-year-old man 2 weeks after liver transplantation. ERCP image shows leakage of injected contrast medium (arrow).	21
8	Cholangiogram of an anastomotic stricture and a non-anastomotic stricture	22
9	(A) Postoperative intra-abdominal hemorrhage attributed to coagulopathy; (B) Postoperative intra-abdominal hemorrhage attributed to non-coagulopathic causes.	23
10	A case of Rt Pleural effusion post liver transplantation	25
11	Images from pre-operative CT hepatic graft volumetry of living donor	43
12	Biliary anatomy.	43
13	Hepatic segmental anatomy.	44

Fig.	Title	page
14	Demonstration of less common portal vein variants.	44
15	Severe hepatic steatosis. Axial unenhanced CT image shows a decreased hepatic attenuation in comparison with spleen (S).	45
16	Three-dimensional volume—rendered (VR) image shows the normal hepatic arterial anatomy.	45
17	Potential living liver donor evaluation flow of Seoul National University Hospital.	47
18	Preoperative CAT scan volumetric measurement for LDLT donor.	53
19	Salvage dual graft living donor liver transplantation after major hepatectomy	55
20	Chart showing significant difference between two groups in Residual Volume	73
21	Chart showing the difference between the two groups regarding After how many days postoperatively bilirubin returned to normal?	74
22	Chart showing the difference between the two groups regarding Maximum bilirubin level postoperatively	74
23	Chart showing the difference between the two groups regarding Mean bilirubin level postoperatively	75
24	Chart showing the difference between the two groups according to post-operative complications	75
25	showing AST pattern postoperatively	89
26	showing ALT pattern postoperatively	80

List of Tables

Table	Title	page
1	Indications for liver transplantation	8
2	Child-Pugh score	10
3	The Expanded Milan Criteria	15
4	Contraindications for liver transplantation	17
5	Characteristics of Induction Immuno- suppressive Agents Used in Liver Transplantation. Adapted but modified from Halloran PF, 2004	29
6	Characteristics of Maintenance Immunosuppressive Agents Used in Liver Transplantation. Adapted but modified from Halloran PF, 2004	31
7	Overview of post-transplant aftercare	34
8	Liver transplant activity in the Arab world until August 2013 arranged according to date of the first liver transplant	37
9	Evaluation of dropouts or refusals for living donation at the University of Toronto, Toronto, Ontario	39
10	Evaluation protocol for potential living liver donors at the University of Essen, Germany	40
11	Specific Complications and Their Management According to Modified Clavien's Grades of Overall Complications after Hepatectomy in 832 Living Donors	50
12	Clavien's scale of postoperative complications	52
13	Steps of Laboratory evaluation for donors.	57, 58
14	Compare age, residual volume and mild fibrosis	71
15	Compare Gender, Steatosis, Type of Graft, presence of HBcIgG in serum and operating	72

Table	Title	page
	Center.	
16	Compares Type of Complications.	72
17	Compares post-operative bilirubin data (its maximum level, its mean in 7 days and when it returned to normal), grade of Complications and Hospital Stay	73
18	Clarify the liver enzymes "ALT, AST" pattern postoperatively with Mean, Median and SD	76, 77, 78

Introduction

"The end justifies the means" the need for new livers for children suffered from liver failure justified the donation of their parents of a part of their livers; this is how liver transplantation began.

Liver transplantation is the only treatment of patients suffering from ESLD resulting from liver cirrhosis, decompensated liver disease, acute liver failure and hepatocellular carcinoma within Milan criteria (*Roberto et al.*, 2015). During the last four decades, liver transplantation evolved from an experiment with a very high mortality rate to a common procedure with acceptable survival rates on the short and long runs (*Stefan et al.*, 2014).

Orthotopic liver transplantation (OLT) became a routine procedure and the one and five year survival rate had increased to 90% and 80% respectively (*Bart et al.*, 2012).

Living donor liver transplantation (LDLT) began in 1989 as a solution to solve the shortage of diseased donors (DD) organs for pediatric recipients. The increasing shortage of DD grafts for adults in North America and Europe, gave way to living donation (LD) as a potential solution to the shortage of DD organs (*Shah et al.*, 2006).

Although more than 1100 cadaveric transplants are performed each year, over 300 patients die annualy on the liver transplant waiting list (Eurotransplant). Living-donor

liver transplantation (LDLT) is a way to enlarge organ pool for patients. In peadiatric patients, the donation of lateral segment of the left lobe became more successful and a lot of centers performed LDLT more and more (*Peter et al.*, 2004).

Some countries limit cadaveric organs transplantation so LDLT was the proper solution for this (*Burcin et al.*, 2008). 4%-5% of all liver transplantations (LTs) came from living donors (*Andrea et al.*, 2017).

Chronic liver diseases are very common in Egypt. Hepatitis C virus (HCV) prevalence is 14.7% between 15 and 59 years age. This high prevalence led to increased numbers of patients in need to liver transplantation (LT) who suffered from end stage liver disease (ESLD), (*Khaled et al.*, 2016).

Cadaveric organ donation is still illegal in Egypt. So in order to save patients suffered from ESLD living donor liver transplantation (LDLT) was begun. It was first introduced in 1991 with acceptable results; but it is risky to healthy donors, there is no cadaveric back up and is not available for all patients (*Khalaf et al.*, 2005).

Donor morbidity and mortality is a tremendous issue as it limits living donation that was created to overcome the shortage of organs (*Andrea et al., 2017*). Donor safety is questioned despite the outstanding results of LDLT (*Itamoto et al., 2006*).