

ROLE OF MAGNETIC RESONANCE IMAGING IN EVALUATION OF ANTERIOR KNEE PAIN

Thesis
Submitted for Partial Fulfillment of the
Master's Degree in Radio-diagnosis

By

Yasir Hussain Motlaq

M.B.CH. B
Baghdad College of Medicine

Under Supervision of

Prof. Dr. Yasser Abdelazim Abbas

Professor of Radio-diagnosis
Faculty of Medicine – Ain Shams University

Dr. Yasser Ibrahim Abdulkhalik

Assistant professor of Radio-diagnosis Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain shams University 2019

سورة البقرة الآية: ٣٢

First, thanks are all directed to **ALLAH**, for blessing this work until it has reached its end, as a part of generous help throughout my life.

I would like to express my deep gratitude to **Prof.Dr. Vasser Abdelazim Abbas,** Professor of Radio-diagnosis,
Faculty of Medicine – Ain Shams University, for his
encouragement and sincere effort throughout the whole
stages of this work. I really have the honor to complete this
work under his supervision.

I would like to thank **Dr. Yasser Ibrahim Abdulkhalik,** assistant Professor of Radio-diagnosis,
Faculty of Medicine – Ain Shams University, for his fruitful guidance and supervision.

My dedication goes to my **Parents** and my **Wife**, for their valuable support, encouragement, and patience throughout my study period.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of study	3
Review of literature	
Technique and normal anatomy of knee MRI	4
Normal MRI Anatomy	12
Different Etiologies of Anterior Knee Pain	
And their MRI findings	19
Patients and Methods	41
Results	45
Case presentation	54
Discussion	61
Summary and conclusion	70
References	73
Arabic Summary	

List of Abbreviations

Abbrev. Full-term

ACL : Anterior cruciate ligament

AKP : Anterior knee pain

CT : Computed tomography

FOV : Field of view FSE : Fast spin echo

IBP : Infrapatellar bursitis

LCL : Lateral collateral ligament

LM : Lateral meniscus

MCL : Medial collateral ligament

MM : Medial meniscus

MRI : Magnetic resonance imagingOSD : Osgood Schlatter diseasePCL : Posterior cruciate ligament

PDWI : Proton density weighted image

PD : Proton density

PPB : Prepatellar bursitis
SD : Standard deviation
SI : Signal intensity

STIR : Short-TI inversion recovery

TE: Echo time

TR: Time Repetition
TSE: Turbo spin echo

List of Tables

Table N	o. Title	Page No.
Table (1):	MRI grading of chondromalacia patell	la44
Table (2):	The descriptive statistics of the patient's	_
Table (3):	Distribution of the sample ac sex	_
Table (4):	The Percentages of the prevalence causes of Anterior knee sex	pain by
Table (5):	Demonstrates the prevalence of 11 diffound among the patients in the st This table shows the largest percentage patients suffer from chopatella	udy sample. ntage of the ondromalacia
Table (6):	Demonstrates percentage of sex among different diseases	-
Table (7):	Demonstrates percentage of predifferent grades of chopatella	ondromalacia

List of Figures

Figure N	No. Title	Page No.
Figure (1):	Normal medial and lateral Menisci sections)	
Figure (2):	Normal Cruciate Ligaments	13
Figure (3):	: Normal patellar and quadriceps tendons	14
Figure (4):	Coronal proton density weighted MR ima fat saturation demonstrates the LCL collateral ligament portion)	(fibular
Figure (5):	Coronal T2 weighted MR image with fat sa shows the superoinferior extent of the MCL	
Figure (6):	Axial T1 weighted MR image shows pate cruciate ligaments and peri-articum	ılar tendons
Figure (7):	Sagittal fast-spin-echo magnetic resonance knee, demonstrating articular cartilage	delamination
Figure (8):	Sagittal STIR and PD WIs of the knee wit line tenderness following a knee injury	th lateral joint-
Figure (9):	A Sagittal STIR WI and b PDWI of the kn with chronic osteochondral injury, dem absence of a bone marro pattern	onstrating the
Figure (10): A Sagittal STIR WI and b PDW characteristic transchondral fractures	
Figure (11)	Chondromalacia patella grade I. Axial proton density-weighted image (PDWI) increased signal in patellofemoral cartilage patellar facet	demonstrating e of the lateral

Figure (12):	Chondromalacia patella grade II. A. Axial fat-suppressed PD and B. sagittal T2-weighted images demonstrating chondromalacia28
Figure (13)	Chondromalacia patella grade III. Axial fat-suppressed PDWI demonstrating greater than 50 % partial-thickness articular cartilage loss
Figure (14)	Chondromalacia patella grade IV. A Sagittal and B axial fat suppressed T2-weighted images29
Figure (15)	A Sagittal T1 and b sagittal fat suppressed T2WI demonstrating edema involving a significant portion of the infrapatellar fat pad
Figure (16)	Osgood Schlatter disease. A Sagittal PD and b sagittal fat- suppressed PD-WIs. 32
Figure (17)	Non-resolved Osgood Schlatter lesion. A Sagittal T2 fat-suppressed, b sagittal, and c axial PD images 32
Figure (18)	Recurrent patellar dislocation34
Figure (19)	Patellar tendinosis. Sagittal PD FSE demonstrates severe proximal patellar tendinosis
Figure (20)	Patellar tendon rupture35
Figure (21)	Pes anserinus bursitis. Sagittal STIR MR image shows the distension of the bursa
Figure(22):	Pes anserine bursitis. Axial fluid sensitive image shows fluid collection
Figure (23)	Prepatellar bursitis. A Axial fat-suppressed T2 and b sagittal PD-weighted images demonstrate oval-shaped fluid signal intensity
Figure (24)	Hemorrhagic prepatellar bursitis39
Figure (25)	:Hemorrhagic deep infrapatellar bursitis40

Figure (26)	e: Pie chart sex distribution of the sample according to sex
Figure (27)	Bar chart Percentages of the prevalence of different causes of Anterior knee pain by sex
Figure (28)	Comparison between disease exist and disease not exist according to the disease of anterior knee pain
Figure (29)	Demonstrates percentage of sex prevalence among different diseases
Figure (30)	Demonstrates percentage of prevalence of different grades of chondromalacia patella53
Figure (31)	demonstrate high signal intensity within the quadriceps tendon at the patellar attachment and minimal amount of joint effusion
Figure (32)	demonstrate a large well defined lobulated intra_articular cystic lesion within the infra patellar pad of fat55
Figure (33)	fragmentation of the tibial tuberosity and overlying soft tissue swelling and sagittal PD WI and axial T2 WI show fragmentation of the tibial tuberosity with thickened infrapatellar tendon
Figure (34):	demonstrate partial interruption of the lateral portion of the quadriceps tendon with fluid signal within
Figure (35):	A Axial T2 weighted image and B sagittal PD weighted Image demonstrating denudation of the patellar articular cartilage with focal area of full thickness cartilage loss at the medial patellar facet

List of	figures
---------	---------

0 \ /	A Axial T2 weighted image and b sagittal PD weighted image demonstrating denudation of the articular cartilage at the lateral facet of the patella
	demonstrate well-corticated non-united fragment along the superolateral part of the patella and the medial patellar retinaculum with intrasubstance bright signal and kissing bone contusions

Abstract

Background: The knee joint is one of the most commonly injured joints in the body. Because of its complex structure, this joint is subjected to numerous pathologies and due to the recent increase in various sport activities, there has been a parallel increase in sport-induced internal derangements of the knee. The main strength of knee MRI is the assessment of articular and Peri-articular diseases. The specific structures best suited for MRI assessment include tendons, muscles and ligaments, as well as peri-articular soft tissue masses.

Objective: The purpose of this study is to detect the accuracy of MR imaging as a diagnostic tool in the evaluation of different knee joint pathologies that cause anterior knee pain, with emphasis on some of their grades and types for better assessment.

Methodology: This study included 20 patients (6 female and 14 male). Their ages range between 10-60 years (average age 30 years). All presented by anterior knee pain and were referred to radiology department of Ain Shams University hospital or private centers for MRI examination after orthopedic consultation.

Results: 5% of the patients presented with anterior knee pain showed MRI evidence of patellar tendinopathy (66% below the age of 30 years and more in females). In all cases the hyperintense focal thickening was at the proximal third of the tendon, with the AP diameter of the patellar tendon greater than 8mm. In our results about 10% of the patients in the study sample, had MRI evidence of tear in the anterior horn of lateral knee meniscus with a female equal to male (50% females and 50% males). Cartilage injuries were detected in 5% of the study sample, showing male predominance (100% were male and 0% were female) with average age 32 years. All have a past history of trauma.

Conclusion: MRI is generally safe, accurate, and specific modality which has been proven to be the modality of choice in the diagnosis of different knee pathologies that cause anterior knee pain in different age groups. Also, it has a high specification in detecting the grades and types of some of these diseases.

Keywords: MRI, Anterior Knee Pain

Introduction

Anterior knee pain (AKP) is the most common knee complaint, usually occurring in adolescents and young adults (Collado and Fredericson, 2010).

It is more common in athletic individuals, particularly common in adolescents, between the ages of 12 and 17 years and may limit an individual's ability to perform common activities of daily living such as stair climbing and prolonged sitting (**Nunes et al. 2013**).

It also has the tendency to become chronic, especially in active individuals, adding an additional aspect of complexity to the treatment There is agreement among recent reviews that conservative approaches are the preferred choice of treatment for AKP (Leibbrandt, D.C. & Louw, Q., 2017).

Magnetic resonance imaging (MRI) in the recent decades has become the gold standard imaging modality for different knee pathologies as it is safe, and RF pulses used in MRI do not cause ionization (Nunes et al. 2013).

With MRI, we can obtain direct coronal and oblique image which is impossible with radiography and CT. Particularly useful for the scanning and detection of

Introduction

abnormalities in soft tissue structures like the cartilage tissues, tendons, and ligaments. MRI also can help determine which patients with knee injuries require surgery. MR imaging is recognized as a standard procedure and has replaced diagnostic arthroscopy as the primary diagnostic modality for many knee pathologies (**Escala et al., 2006**).

Aim of the Work

The aim of the current study is to determine the diagnostic accuracy of magnetic resonance imaging (MRI) in evaluation of patients with history of anterior knee pain

Review of Literature

Technique and normal anatomy of knee MRI

Positioning and Coil Selection:

Knee MRI is possible using a variety of magnet designs (closed bore whole body, open whole body, dedicated extremity and field strengths. Regardless of magnet design, a local coil is mandatory to maximize signal-to-noise ratio. Typically, a cylindrical coil (often called an extremity or knee coil) surrounds the knee. Newer multichannel knee coils containing eight or more coil elements will further increase signal-to-noise ratios, and are required when using techniques like parallel imaging, which decrease the time of the scan (Magee, Shapiro and Williams, 2004).

Typically, the patient is positioned supine with the affected knee completely or nearly completely extended in the coil. Mild external rotation of the leg is often comfortable for the patient and may orient the anterior cruciate ligament into the sagittal plane to facilitate its evaluation. Gentle immobilization of the extremity and use of comfort measures for the entire body will help to reduce