Comparison between surgical outcome of levator apponeurosis resection and levator apponeurosis tucking by non absorpable sutures in cases of unilateral congenital ptosis

Thesis

Submitted for Partial Fulfillment of Master Degree In Ophthalmology

By

Amira Akmal Sobhy

(M.B., B.Ch.), Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Othman Ali Othman Ziko

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Samah Mahmoud Fawzy

Lecturer of Ophthalmology Faculty of Medicine - Ain shams University

Dr. Mahmoud Ahmed Mahmoud Elsamkary

Lecturer of Ophthalmology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Dr. Othman Ali Othman Ziko**, Professor of Ophthalmology,
Faculty of Medicine - Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Samah Mahmoud Fawzy**, Lecturer of Ophthalmology, Faculty of Medicine - Ain shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I would like also to thank with all appreciation **Dr. Mahmoud Ahmed Mahmoud Elsamkary,** Lecturer of Ophthalmology, Faculty of Medicine - Ain shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, I can't forget to thank all members of my Family specially my Parents, for pushing me forward in every step of my life.

Amira Akmal Sobhy

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	
I. Applied anatomy of the eyelid	4
II. Physiology of Lid Movements	15
III. Histopathological Changes in Ptosis	17
IV. Assessment of a case of ptosis	36
Materials and Methods	56
Results	67
Discussion	95
Conclusion	101
Summary	102
References	103
Arabic Summary	

List of Abbreviations

Abbr. Full-term

CPEO : Chronic progressive external ophthalmoplegia

CSF : Cerebrospinal fluid

GPC : Giant pupillary conjunctivitis

LEMS : Lambet-Eaton myathenic syndrome

LF : Levator function

LPS : Levator palpeprae superiosis

LPTL: Lower-positioned transverse ligament

MCT : Medial canthal tendon

MG : Myasthenia gravis

MRD : Marginal reflex distance

OPMD: Oculopharyngeal muscular dystrophy

PTFE : Polytetrafluoroethylene

RAPD : Relative afferent pupillary defect

SOFS : Superior orbital fissure syndrome

STL : Superior transverse ligament of whitnall

ZMC : Zygomatico-maxillary complex

List of Tables

Table No	o. Title Pa	age No.
Table (1):	Mean age distribution between the two stugroups	
Table (2):	Sex distribution between 2 groups	68
Table (3):	Pre-operative grade of ptosis between the studied groups	
Table (4):	Comparison between Preoperative present crease height between 2 studied groups	
Table (5):	Comparison between Preoperative cr height between 2 studied groups	
Table (6):	Comparison between peroperative postoperative levator function betwee studied groups	n 2
Table (7):	Comparison between peroperative postoperative levator function betwee studied groups	n 2
Table (8):	Comparison between preoperative postoperative marginal reflex distance between 2 studied group.	ween
Table (9):	Comparison between preoperative postoperative marginal reflex distance between 2 studied group	ween
Table (10):	Comparison between preoperative postoperative palpebral fissure height betw 2 studied groups.	ween
Table (11):	Comparison between postoperative exsymmetry between 2 eyes in 2 studied gro	•

Table (12):	Comparison between postoperative lid lag between 2 studied groups	81
Table (13):	Comparison between postoperative eyelid contour abnormalities between 2 studied groups	82
Table (14):	Comparison between postoperative lagophthalmos between 2 studied groups	84
Table (15):	Comparison between postoperative lid notching between 2 studied groups	85
Table (16):	Comparison between postoperative lid edema between 2 studied groups	86
Table (17):	Comparison between postoperative ptosis recurrence in 2 studied groups	87

List of Figures

Figure N	No. Title Page	e No.
Figure (1):	The anterior and posterior lamellae of the eyelid. (17)	6
Figure (2):	Anterior view of the three slips of the orbicularis oculi.(19)	7
Figure (3):	The tarsi and their ligaments. (35)	12
Figure (4):	The orbital septum originating from the arcus marginalis of the orbital rim. (39)	13
Figure (5):	Normal conjunctival anatomy. (40)	14
Figure (6):	Marginal reflex distance examination	42
Figure (7):	The position of eyelid in downgaze	42
Figure (8):	Assessment of levator function	43
Figure (9):	Assessment of upper eyelid creese	44
Figure (10):	Marking of upper eyelid creese	58
Figure (11):	Skin orbicularis deep insicion	59
Figure (12):	Identification of tarsal plate and levator palpebrae superiosis	59
Figure (13):	Levator attachment at tarsal plate was cut and anterior and posterior dissection was done after cutting 2 horns	60
Figure (14):	Reinsertion of the muscle at superior tarsus by three ethibond sutures passed in a mattress manner.	60
Figure (15):	Three lid crease forming sutures were put and rest of the skin was closed with interrupted 6-0 vicryl suture	61
Figure (16):	Closure of skin	62

Figure (17):	Double-armed Ethibond sutures were passed between levator aponeurosis near Whitnall's ligament and superior tarsus in a mattress form	63
Figure (18):	Excision of skin muscle lamina	63
Figure (19):	Creese forming sutures	64
Figure (20):	Comparison between the two studied groups as regards mean age	67
Figure (21):	Sex distribution between 2 groups	68
Figure (22):	Pre-operative grade of ptosis in the two studied groups.	70
Figure (23):	Pre operative bilat mild ptosis	70
Figure (24):	Pre operative left moderate ptosis	71
Figure (25):	Comparison between Preoperative presence of crease height between 2 studied groups	72
Figure (26):	Comparison between Preoperative crease height between 2 studied groups	73
Figure (27):	Comparison between peroperative & postoperative levator function between 2 studied groups	75
Figure (28):	Comparison between peroperative & postoperative levator function between 2 studied groups	75
Figure (29):	Comparison between preoperative & postoperative marginal reflex distance between 2 studied group	78
• ,	Comparison between preoperative & postoperative marginal reflex distance between 2 studied group	78
Figure (31):	Comparison between preoperative & postoperative palpebral fissure height between 2 studied groups.	80
Figure (32):	Comparison between postoperative eyelid symmetry between 2 eyes in 2 studied groups	81

Figure (33):	Comparison between postoperative lid lag between 2 studied groups	82
Figure (34):	Comparison between postoperative eyelid contour abnormalities between 2 studied groups	83
Figure (35):	3 months postoperative follow up of left eye in a patient showing mild eye lid contour abnormality	83
Figure (36):	Comparison between postoperative lagophthalmos between 2 studied groups	84
Figure (37):	3 months follow up post operative of a patient showing mild lagophthalmos	84
Figure (38):	Comparison between postoperative lid notching between 2 studied groups	85
Figure (39):	Comparison between postoperative lid edema between 2 studied groups	86
Figure (40):	Comparison between postoperative ptosis recurrence in 2 studied groups	87
Figure (41):	Left moderate ptosis in tucking group (preoperative)	88
Figure (42):	Left eye of the same patient above after 1 month post operative showing mild edema	88
Figure (43):	Left eye of the same patient above after 3 months post operative showing mild recurrence and asymmetry between 2 eyes	89
Figure (44):	Left eye of a patient in tucking group after 3 months follow up post operative showing moderate recurrence and asymmetry between 2 eyes	89
Figure (45):	Left mild ptosis in tucking group	90
	3 months postoperative follow up of the same patient above showing mild eye lid contour abnormality	
	aonormanty	

Bilateral mild ptosis in tucking group	91
3 months postoperative follow up of the same patient above showing symmetrical eyelids	91
Left mild ptosis in resection group	91
3 months postoperative follow up of the same patient above showing symmetrical eyelids	92
Left moderate ptosis in resection group	92
3 months postoperative follow up of the same patient above showing symmetrical eyelids with mild persistant edema of left eye	92
Left mild ptosis in resection group	93
3 months postoperative follow up of the same patient above showing symmetrical eyelids with mild persistant edema of left eye	93
Right mild ptosis in tucking group	93
3 months postoperative follow up of the same patient above showing mild eyelid contour abnormality	94
	3 months postoperative follow up of the same patient above showing symmetrical eyelids

Introduction

Blepharoptosis can be classified according to various criteria such as age of onset (congenital or acquired), severity, etiology, and levator function. Acquired blepharoptosis may be further subdivided into myogenic, aponeurotic, myathenia, neurogenic, mechanical, traumatic. On the basis of severity, it may be minimal or mild drooping (1-2 mm), moderate (3-4 mm), or severe (>4 mm). When considering levator function, it can be poor (0-4 mm), moderate (5-10 mm), or good (>10 mm) (1)

The surgical correction of blepharoptosis must thus be individualized on the basis of degree of ptosis, levator function, and the need for concomitant blepharoplasty or brow surgery. Fundamental understanding of the underlying anatomical cause of the blepharoptosis can considerably aid in selecting the appropriate surgical procedure (2)

The specific surgical method for repairing blepharoptosis is selected according to the degree of eyelid droopiness and the preoperative levator function

Ptosis cases with levator function of 4 mm or more are usually repaired by levator resection (3) whereas sling surgery is used in cases of levator function under 4 mm (4).

The transconjunctival approach is mainly used in cases of mild to moderate ptosis with a good response to the phenylephrine test₍₅₎

The transcutaneous approach can be applied to all types of ptosis except for the myogenic type, in which sling surgery may be best suitable

Levator resection is the most common procedure that can be used in children who have congenital ptosis or in adults who have acquired ptosis. The amount of levator resected is determined preoperatively by the levator function and the level of ptosis. Dissection is often extensive and involves dissecting the levator from the underlying Muller's muscle and the conjunctiva, as well as disruption of the medial and lateral horns of the levator (6)

Meltzer *et al*(7) modified this by combining the simplicity of a single suture technique with the flexibility of an adjustable suture and reported excellent results in their retrospective series of 51 patients.

The small incision approach was then formally described by Lucarelli and Lemke; however, their dissection technique is similar to the traditional approach with less dissection and smaller incision (8)

Disadvantages of levator resection include corneal exposure, eyelid level too high or too low,conjunctival prolapse, contour abnormality,lash ptosis,entropion,lash eversion and ectropion, poor corneal skin crease (9)

Nocturnal lagophthalmos and superficial punctuate erosion were the most common complications after levator resection (10)

This study will describe a technique of anterior approach to levator apponeurosis tucking by non absorbable suture without resection of conjunctiva and Muller's muscle.

Aim of the Work

To compare the surgical outcome of levator aponeurosis resection and levator aponeurosis tucking done by non absorbable sutures in cases of unilateral congenital blepharoptosis.

I. Applied anatomy of the eyelid

The eyelids are mobile, flexible, multilamellar structures that cover and protect the anterior surface of the globe. They also provide vital chemical elements to the precorneal tear film, and help distribute these layers evenly over the surface of the eye. Any esthetic reconstructive surgery on the eyelids requires a thorough knowledge of eyelid anatomy. (11)

The Palpebral Fissure

Eyelid topography is influenced by age, sex, race, ethnicity, and surrounding facial anatomy, particularly that of the eyebrow. In most individuals, the lateral canthus sits 2 mm higher than the medial canthus. The adult interpalpebral distance measures 28-30 mm horizontally and 9-12 mm at its greatest vertical extent centrally. The upper eyelid margin rests approximately 1-2mm below the superior limbus and is gently curved, with the highest point nasal to the center of the pupil. These relationships should be kept in mind during ptosis repair or eyelid reconstructions. (12,13)

The upper eyelid crease is an important surgical landmark, as it is often an incision site. It is a horizontal indentation caused by attachments of superficial levator aponeurotic fibers into subcutaneous tissue. (14) It rides parallel to the lid margin and lies 8-11 mm above the eyelid

margin in women and 7-8 mm in men. This crease should be reformed during ptosis or blepharoplastic surgery to maintain normal cosmetic appearance, and to prevent downward displacement of preaponeurotic fat or overhanging of eyelid skin. (13)

Eyelid Skin and Margin

The eyelid skin is the thinnest in the body, mainly owing to its attenuated dermis. The thinness of the skin allows eyelid incisions to heal rapidly and helps keep scarring to a minimum. (15)

The upper eyelid margin has approximately 100 eyelashes. Several sebaceous Zeiss glands empty into each lash follicle, and Moll sweat glands are located between the follicles. Posterior to the lash line on the eyelid margin is the easily noticeable line of meibomian glands, which emanate from the edge of the tarsus. (15)

Between the lash line and the meibomian line lies a faint grey line, which is more pronounced in young individuals. This represents the edge of the muscle of Riolan, a striated muscle in the same plane as, but distinct from, the orbicularis oculi. ⁽⁵⁾ The grey line serves as an important surgical landmark, separating the eyelid vertically into the anterior lamella (skin and orbicularis) and the posterior lamella (tarsus, retractors, and conjunctiva) as shown in Figure (1). ⁽¹⁶⁾