

Radiation Synthesis, Characterization of Nanocomposites Based on Natural Polymer Blends and their Biomedical Applications

Thesis Submitted for

The Degree of Doctor Philosophy of Science in Chemistry

To

Chemistry Department, Faculty of Science

Ain shams University

By

Doaa Mostafa Ibraheim

Assistant Lecturer, Polymer chemistry Department,
National Center for Radiation Research and Technology
Atomic Energy Authority, Cairo, Egypt

Radiation Synthesis, Characterization of Nanocomposites Based on Natural Polymer Blends and their Biomedical Applications

A thesis submitted to Chemistry Department Ain shams University For the award of Ph.D. in Chemistry

BY

Assistant Lecturer: Doaa Mostafa Ibraheim
Polymer Chemistry Department
National Center for Radiation Research and Technology
Atomic Energy Authority

Thesis supervisors

Prof. Abdel Gawad Mohamed Rabie
Professor of Organic Chemistry
Chemistry Department
Faculty of Science
Ain shams University

*Prof. Horia Mahmoud Mahmoud Nizam El-Din*Professor of Polymer and Applied Radiation Chemistry

National Center for Radiation Research and Technology Atomic Energy Authority

Faculty of Science Ain shams University

Approval Sheet

Title of the Ph.D. thesis

Radiation Synthesis, Characterization of Nanocomposites Based on Natural Polymer Blends and their Biomedical Applications

Name of the candidate: Doaa Mostafa Ibraheim

Supervision (**Signature**)

committee:

Prof. Abdel Gawad Mohamed Rabie

Professor of Organic Chemistry Chemistry Department Faculty of Science Ain shams University

Prof. Horia Mahmoud Mahmoud Nizam El-Din

Professor of Polymer and Applied Radiation Chemistry National Center for Radiation Research and Technology Atomic Energy Authority

2019

Ain Shams University Chemistry Department

Student Name: Doaa Mostafa Ibraheim

Scientific Degree: Ph.D. Degree in Chemistry

Department : Chemistry Department

Name of Faculty : Faculty of Science

University : Ain Shams University

Acknowledgements

First, thanks to *Allah* for infinite and persistent supply with patience and efforts to accomplish this work successfully.

I would like to thank *Prof. Dr. Abdel Gawad Mohamed Rabia*, Chemistry Department, Faculty of Science, Ain Shams University, for continuous supervision, practical support throughout this study and helpful discussion.

Deepest gratitude is owed to *Prof. Dr. Horia Mahmoud Mahmoud Nizam El-Din, Professor of polymers and Applied Radiation Chemistry, at National Center for Radiation Research and Technology, Atomic Energy Authority for suggesting the topic of this work, continuous supervision, and practical support throughout this study, valuable guidance and helpful discussion until this work reaching the target.*

I would like to thank my colleagues in the *Polymer Chemistry Department, National center for Radiation Research, and Technology, Atomic Energy Authority* for their cooperation. Special acknowledgments go to my parents, brothers, relatives, and friends for their unconditional support.

ABS7RAC7

Three hydrogels were prepared by gamma radiation copolymerization. The first hydrogel was based on different ratios of acrylic acid (AAc) monomer, plasticized starch (PLSt) polymer and Monmorillonite as a nonocomposite.

Second hydrogel was synthesized taking acrylic acid- co- plasticized Starch AAc/(PLSt) with (65/35)% composition ratio as a base , and different ratios of chitosan (Cs) and Monmorillonite as a nonocomposite.

Where the third had based on different ratios of poly (vinyl pyrrolidone) and alginate while introducing silver nitrate to the polymer matrix to act like a nonocomposite.

The hydrogels were characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of irradiation dose and composition ratios on the degree gelation and swelling of formed hydrogels was studied.

The drug uptake-release characters of all copolymers, taking Sulphanilamide and Prednisolone as model drugs were studied.

For PAAc-co-(PLSt/MMT) co-polymer the studies showed that the appropriate dose of gamma irradiation to achieve homogeneous nanocomposite hydrogel films and the highest swelling in water was 15 kGy, regardless of composition. The introduction of MMT up to 5 wt % improved the physical properties and enhanced the drug uptake-release characters.

<u>Keywords:</u> Nanocomposites; Gamma irradiation; Acrylic acid; Plasticized Starch; Montmorillonite clay; Chitosan; Alginate; Polyvinyl pyrrolidone; Silver nitrate.

List of Contents

ACKNOWLEDGMENT

ABSTRACT

List of Contents

List of figures Aim of the Work

CHAPTER I

INTRODUCTION

1.1. High energy Radiation	1
1.1.1. Sources of Ionizing Radiation	1
1.1.2. Interaction of Radiation with Polymeric Materials	2
1.2. Polymers	4
1.2.1. Classification of polymers	4
1.2.1.1. Origin	4
1.2.1.2. Thermal Response	4
1.2.1.3. Mode of Formation	5
1.2.1.4. line structure	5
1.2.2. Radiation- induced modification of polymers	6
1.2.2.1. Mechanism of radiation interaction	7
1.2.2.2. Radiation processing versus chemical initiation	9
1.3. Hydrogel	9
1.3.1. Properties of hydrogels	10
1.3.2. Classification of hydrogels	11
1.3.3. Natural Hydrogel	12

1.3.3.1. Benefits of natural hydrogels	12
1.3.3.2. Limitations of natural hydrogels	12
1.3.4. Nanocomposite Hydrogels	13
1.3.4.1. Classification of Nanocomposite Hydrogels (NCH)	13
1.3.4.1.1. Hydrogel/metal nanoparticles	18
1.3.4.1.2. Silver Nanocomposite hydrogels	19
1.4. Biomedical applications of nanocomposite hydrogels (NCHs)	22
1.5. Drug Delivery	23
1.6. Wound Healing	24
1.6.1. Types of Wounds and Healing Processes	24
1.6.2. Wound Dressing	25
CHAPTER II	
Literature Review	
2.1. Biomedical Applications of Polymer nanocomposite	26
2.2. Nanocomposite Hydrogels for Biomedical Applications	27
2.3. Acrylic Acid For Biomedical Applications	28
2.4. Biomedical Applications of Starch	30
2.5. Biomedical Applications of Chitosan	33
2.6. Biomedical Applications of Montmorillonite	35
2.7. Biomedical Applications of Sodium alginate	37
2.8. Wound dressing	40
2.9. The silver nanocomposites	41

CHAPTER III

Materials and Experimental Techniques	42
3.1. Materials	42
3.1.1. Polymers	42
3.1.2. Monomers	42
3.1.3. Additives	42
3.1.4. Buffer stuff	43
3.1.5. Drugs	43
3.2. Methods and Apparatus	46
3.2.1. Methods	44
3.2.1.1. Preparation of plasticized starch (PLSt)	46
3.2.1.2. Preparation of PLSt/AAc films	46
3.2.1.3. Preparation of AAc -co-(PLSt/MMT) copolymer hydrogels	46
3.2.1.4. Preparation of Chitosan- AAc -co-(PLST/MMT) copolymer hydrogel	47
3.2.1.5. Preparation of Alginate(AG)/ Poly vinyl pyrrolidone (PVP)beads	47
3.2.1.6. Preparation of Alginate(AG)/ Poly vinyl pyrrolidone (PVP)/ silver nanocomposit beads	48
3.3. Determination of Gel fraction	49
3.4. Determination of swelling properties	49
3.4.1. Swelling of hydrogels and nanocomposite hydrogels.	49
3.4.2. Equilibrium Water Content	49
3.5. pH Measurements	50

3.6. Characterizations	50
3.6.1. FT-IR spectroscopic analysis	50
3.6.2. Thermo gravimetric analysis (TGA)	50
3.6.3. X-ray diffraction (XRD)	50
3.6.4. UV/Vis spectrophotometer	51
3.6.5. Transmission electron microscopy (TEM)	51
3.7. Applications	51
3.7.1. Drug uptake and release studies of hydrogels and nanocomposite hydrogels	51
3.7.2. Wound Dressing	52
CHAPTER VI	
RESULTS AND DISCUSSION Part 1	
4.1. Characterization and Biomedical Applications of Nano composite Hydrogels Based on Gamma- Radiation Grafting of Acrylic Acid (AAC) Onto Plasticized Starch (PLSt)/ Nanoparticle Montmorillonite Clay (MMT), Mixtures	53
4.2. Gamma-radiation synthesis of PLSt-co-AAc/ MMT nanocomposite copolymer hydrogels	53
4.3. Characterization of PLSt-co-AAc/ MMT nanocomposite Hydrogels	54
4.3.1. Transmission electron microscopy (TEM)	54
4.3.2. Gel fraction	56
14.1.2.Swelling study	59

4.1.2.1. Swelling study of PLSt/ AAc copolymer hydrogels in distilled water	59
4.3.3. FT-IR spectroscopic analysis	63
4.3.4. Thermo gravimetric analysis (TGA)	65
4.3.5. X-ray diffraction (XRD)	68
4.3.6. Biomedical Applications	71
4.3.7. Drug Delivery	71
4.3.8. Wound Dressing	77
Part 2	80
5.1. Characterization and Biomedical Applications of Nano composite hydrogels Based on Gamma radiated AAc/PLSt/MMT/Chitosan Nano composites	80
5.1.1. Transmission electron microscopy (TEM)	81
5.1.2. Gel fraction	82
5.1.3. Swelling properties	83
5.1.4. FT-IR spectroscopy	85
5.1.5. Thermo gravimetric analysis (TGA)	87
5.1.6. X-ray diffraction (XRD)	89
5.2. Biomedical Applications	91
5.2.1.Drug delivery	91
5.2.2.Wound Dressing	
Part III	99
6.1. Gamma-Radiation Synthesis, Characterization and Drug Delivery Application of Poly(Vinyl Pyrrolidone) (PVP) /Sodium Alginate (AG)/Ag NPs nanocomposite Hydrogels	99

6.2. Characterization AG/ PVP /Ag copolymer hydrogels	100
6.2.1. Transmission electron microscopy (TEM)	100
6.2.2. Gel fraction	101
6.2.3. Swelling properties	105
6.2.4. FT-IR spectroscopy	106
6.2.5. Thermo gravimetric analysis (TGA)	108
6.2.6. X-ray diffraction (XRD)	109
6.3. Biomedical Applications	111
6.3.1. Drug Delivery – Drug release	113
English Summary	121
Arabic Summary	130
Referances	

List of tables

	List of tables		
Table 1	Chemical structure and abbreviations of used chemicals		43
Table 2	Thermal Stability as Weight Loss and Temperatureson the Maximum Rate of Reaction for (PLSt/MMT)- co AAc nanocomposite graft-copolymer Prepared at 20 kGy of Gamma Irradiation	-	68
Table 3	Maximum uptake of drug for (PLSt/MMT)- co- AAc nanocomposite graft-copolymer Prepared at 20 kGy of Gamma Irradiation		72
Table 4	Release of Sulphanilamide drug by (PLSt/MMT)- co AAc nanocomposite copolymer hydrogels, prepared a irradiation dose of 20 kGy		75
	List of Figures		
Figure 1	line structure of polymers	6	
Figure 2	The radiation induced crosslinking of polymers	8	
Figure 3	Photographic picture of various hydrogels	10	
Figure 4	Schematic representation of hydrogels classification	11	
Figure 5	Various stimuli responsive for hydrogels	11	
Figure 6	Various types of nanoparticles	14	
Figure 7	3D sketches of carbon nanostructures	15	
Figure8	Nanocomposite hydrogels from metallic nanoparticles	18	
Figure 9	TEM micrographs of (PLSt/MMT)-co-AAc copolymer nanocomposite hydrogels containing different ratios of MMT clay prepared by gamma irradiation copolymerization of onto PLSt/MMT clay blends. In all cases the ratio of AAc is 10% (gel content of 60%) and the irradiation dose	55	