Role of laparoscopy in abdominal Trauma Patients

Thesis

Submitted for partial fulfillment of Master Degree in General Surgery

Presented by

Mina Romany Zarif Tawfeek

(M.B.B.Ch)

Under Supervision of

Prof. Dr/ Ashraf Omar Mahmoud Ali

Professor of General Surgery Faculty of Medicine Ain Shams University

Prof. Dr/ Mohamed Abd El Monem Abd El Salam Rizk

Associate professor of Vascular and General Surgery
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgements

First, thanks are all directed to **ALLAH**, for blessing this work until it has reached its end, as a part of generous help throughout my life.

It is with immense gratitude that I acknowledge the support and help of **Prof. Dr./ Ashraf Omar Mahmoud Ali,** Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision guidance, effort and great support during various phases of the study. I really have the honor to complete this work under his supervision.

I am profoundly grateful to **Prof. Dr./ Mohamed Abd El Monem Abd El Salam Rizk,** Associate professor of Vascular and General Surgery, Faculty of Medicine, Ain Shams University, for his faithful guidance and the efforts and time he has devoted to accomplish this work.

Last but not the least, I would like to thank my dear **Parents** and my beloved supportive **Wife** who encouraged me spiritually throughout writing this thesis and guided me throughout my life. Without their kind help and support this work could not have come to completion.

Mina Romany Zarif Tawfeek

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Study	4
Review of Literature	
Anatomy of the Abdomen	5
Abdominal Trauma	16
Role of laparoscopy in abdominal trauma	44
Patients and Methods	81
Results	88
Discussion	113
Summary	127
Conclusion	129
References	130
Arabic Summary	<u> </u>

List of Abbreviations

Abbrev. Full-term

ATLS : Advanced trauma life support

BAT : Blunt abdominal trauma

B-HCG: B-human chorionic gonadotropin

CCR : Cell count ratio

CT : Computed tomography

DL : Diagnostic laparoscopy

DPL : Diagnostic peritoneal lavage

DTI : Direct trocar insertion

EL : Exploratory laparotomy

FAST: Focus abdominal sonography for trauma

Fig. : Figure

GCS : Glasgow coma scale

GI : Gastro-intestinal

GSW : Gunshot wound

GUT : Genitourinary tract

HVI : Hollow viscus injury

IVC: Inferior vena cava

LAA : Laparoscopic assisted

LOS : Length of stay

MVA : Motor vehicle accident

NOM : Non operative management

OIS : Organ injury scaling

PAT : Penetrating abdominal trauma

PE: Plain erect

RPH : Retro-peritoneal hematoma

SE : Subcutaneous emphysema

SSI : Surgical site infection

TL: Trauma laparoscopy

US : Ultrasonography

VGE : Venous gas embolism

VN : Veress needle

wbcs/Rbcs Ratio: White blood cells / Red blood cells ratio

List of Tables

Table No	o. Hitle	Page	NO.
Table (1) : u	sually injured organs according to of trauma.	_	
Table (2):	Injury incidence of different or associated organ injuries	•	
Table (3):	options for evaluation in abdomin	al trauma	46
Table (4):	Causes for conversion and reconverted patients		
Table (5) :	Sex distribution of the patients in the study.		
Table (6):	Age distribution and age range patients included in our study		
Table (7):	Distribution of Patients into two a	ge groups.	89
Table (8):	Distribution of patients according of affecting trauma.	• •	
Table (9):	Distribution of penetrating traumaccording to the site of injury	-	
Table (10):	Classification of patients accord laparoscopic findings and methorepair	d used for	
Table (11):	Classification of patients acclaparoscopic findings in relation of affecting trauma.	to the type	
Table (12):	Classification of patients accord number of affected organs.	ling to the	

Table (13):	Classification of patients according to number of affected organs in relation to the type of trauma.	100
Table (14):	Percentage of each organ affection in the patients included in the study	

List of Figures

Figure No	o. Title	Page No.
Figure (1):	Quadrants of the abdomen	7
Figure (2):	Regions of the abdomen	9
Figure (3):	Classification of the abdominal or relation to the peritoneum	
Figure (4):	Zones of retroperitoneal hematon	na15
Figure (5):	Seat Belt sign	21
Figure (6):	Grey turner & cullen signs	21
Figure (7):	Splenic trauma	30
Figure (8):	Diagnostic peritoneal lavage	40
Figure (9):	Stab injury to the small bowel through diagnostic laparoscopy	
Figure (10):	Blunt abdominal trauma with m tear diagnosed and laparoscopically.	repaired
Figure (11):	Algorithm for management of PA	ΔT52
Figure (12):	Possible sites for port insertion	58
Figure (13):	Three-port technique	60
Figure (14):	Liver tear and diaghragmand detected laparoscopically	
Figure (15):	Summary of complications re trauma laparoscopy	
Figure (16):	Evaluation of the small intesting two atraumatic forceps	

Figure (17):	Sex Distribution	38
Figure (18):	Distribution of patients according to their age group	39
Figure (19):	Distribution according to the Type of trauma	9 0
Figure (20):	Distribution of penetrating trauma cases according to the site of injury	92
Figure (21):	Classification of cases according to laparoscopic findings and method of repair	93
Figure (22):	Peritoneal violation as seen by diagnostic laparoscopy	94
Figure (23):	Peritoneal violation At the Rt. Hypochondrium is identified	95
Figure (24):	Straight needle insertion.	95
Figure (25):	Full insertion of the needle to the peritoneal cavity.	96
Figure (26):	Holding the needle using laparoscopic needle holder	96
Figure (27):	One stitch performed	97
Figure (28):	Two continous stitches	97
Figure (29):	Abd. wall defect at the rt. Hypochindrium fully closed with continous stitching using Vicryl 1	98
Figure (30):	classification of cases according to the number of injured organs	00
Figure (31):	Percentage of each organ injury 101	

Figure (32):	Serosal tear involving ileal loop caused by penetrating satb wound to the abdomen as seen laparoscopically
Figure (33):	Demonstrating step by step repair of the ileal serosal tear caused by penetrating trauma using a round needle and PDS 3/0 to perform a simple stitch as seen laparoscopically
Figure (34):	Ileal loop serosal tear after being repaired with a single stitch as seen laparoscopically
Figure (35):	Hemoperitoneum (blood collection) at the Morrison's pouch and around the liver caused by penetrating trauma to the abdomen
Figure (36):	Minor laceration of the liver that was controlled with gel foam application 106
Figure (37): '	Traumatic diaghragmatic hernia caused by RTA with herniation of the abdominal contents to the left side of the chest as seen laparoscopically
Figure (38):	Reduction of the abdominal contents from the left side of the chest to the abdominal cavity using two atraumatic graspers 108
Figure (39):	Using Prolene 1 with a round needle to perform interrupted stitching to repair the diaphragm
Figure (40): 1	nterrupted stitching of the diaghragm 110
Figure (41):	Diaphragmatic tear totally repaired laparoscopically using prolene 1

				List of Figu	ıres
	interrupted	stitches	as	seen	
	laparoscopically	7 	•••••	1	.11
Figure (42):	Laparotomy sho	owing an	ant. wall	gastric	
	400#	_		1	10

Introduction

Trauma is the leading cause of mortality in patients under 35 years old worldwide, and poses a major challenge to health care providers. Although geographical variations exist, blunt trauma accounts for 78.9 to 95.6 % of injuries around the globe. Between 9 and 14.9 % of all trauma cases involve the abdomen (*Serg et al.*, 2005).

Laparotomy is the standard approach for abdominal trauma but is associated with morbidity ranging from 20 to 22 % to 41.3 %, particularly when explorative laparotomy is negative (*Sosa et al.*, 1995).

Non-therapeutic operations or negative laparotomies for penetrating trauma carry a significant complication rate with mortality of up to 5 % and morbidity as great as 20 % (*Shih et al.*, 1999).

With technical developments in imaging, and advances in surgical techniques, the rate of negative and therefore unnecessary laparotomy has been reduced. Laparoscopy in trauma can potentially further decrease the negative laparotomy rate (*Zantut et al.*, 1997).

Although several diagnostic methods are available for evaluation of trauma patients, prompt recognition of intraabdominal injury still poses a significant clinical challenge, particularly in patients with diaphragmatic, mesenteric and/or small bowel injury. The presence of free fluid in the abdomen without evidence of any organ injury must be clarified (*Rodriguez et al.*, 2002).

Although the noninvasive methods provide high-quality information, there is still a degree of diagnostic uncertainty with blunt abdominal trauma, especially when the gastrointestinal tract, pancreas, and diaphragm are involved. This uncertainty in the diagnostic process was, and is, an important justification for exploratory laparotomies undertaken to avoid missed injuries. A considerable number of these laparotomies are unnecessary or nontherapeutic and have corresponding morbidity (*Leppäniemi et al.*, 1995).

Now, diagnostic and therapeutic laparoscopy for blunt and penetrating abdominal injuries could reduce the rate of non-therapeutic laparotomy to 1.8 % (*Johnson et al.*, 2013).

Patients who will undergo therapeutic laparoscopy for resolution of their abdominal trauma injuries will have decreased hospital stay, less wound infection, less post-operative pain, better cosmetic result and earlier ambulation (*Lin et al.*, 2015).

Initially, the evaluation of peritoneal violation in hemodynamically stable patients was seen as the greatest benefit of laparoscopy for trauma. Improvements in laparoscopic training and technology have enabled an increase in the use of diagnostic and therapeutic procedures in trauma patients (*Fabian et al.*, 1993).

Despite these clear potentialities, laparoscopy has not yet gained wide acceptation and it is not consistently performed in trauma patients. There are several reasons for this:

- 1. In bleeding, or potentially bleeding patients, timing is of essence. The logistics for laparoscopy set up of theatre still takes longer than for open surgery. Once the operation has started it takes longer to gain access, identify the bleeder and, especially, control it when compared to a trauma laparotomy.
- 2. In haemodynamically normal patients with spleen injuries a diagnostic laparoscopy may increase the splenectomy rate.
- 3. The risk of missing injuries (hollow viscus mainly) is high. This is very much operator dependent, but it may carry disastrous outcomes.
- 4. Logistics wise most trauma happens at night when staff may be less motivated to embark in a time consuming procedure (*Bendinelli et al.*, 2012).

Aim of the study

The aim of the study is to evaluate the role of laparoscopy in minimizing the complications of exploratory laparotomy, especially when the results of laparotomy comes negative.