Cardiac Structure and Function in Predialysis Chronic Kidney Disease Patients

Thesis

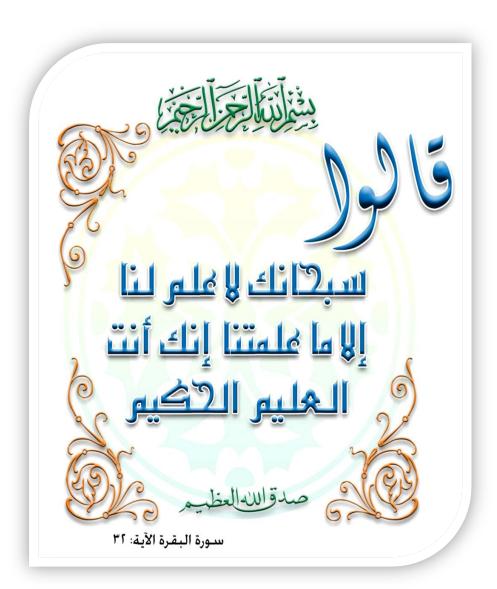
Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

Ahmed Mosleh Monir

M.B.B.CH.; Ain Shams University

Supervised by


Prof. Dr. Abdel-Bassit El-Shaarawy Abdel-Azeem

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Cherry Reda Kamel

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Dr. Abdel-Bassit El-Shaarawy Abdel-Azeem**, Professor of Internal Medicine and Nephrology, Faculty of Medicine — Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Cherry Reda Kamel,** Assistant Professor of Internal Medicine and Nephrology, Faculty of Medicine – Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

Last but not least, I can't forget to thank with all appreciation all members of my **Family**, specially my **Parents** for their great support and pushing me forward in every step of my life.

Ahmed Mosleh Monir

Dedication

I dedicate this work with sincere love and appreciation to my **Father**, for his great support and assistance.

Ahmed Mosleh

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	vi
Abstract	vii
Introduction	1
Aim of the Work	3
Review of Literature	
Chronic Kidney Disease	4
Cardiovascular disease in chronic kidney dise	ase 38
Patients and Methods	96
Results	101
Discussion	115
Summary	124
Conclusion	127
References	128
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ACE Angio-tensin enzyme
Alb/Cr Albumin/creatinine
ALK Alkalinephosphatase
ApoB Apolipoprotein B
ApoC Apolipoprotein C
ARBs Angiotensin receptor blocker
ARIC Atherosclerosis Risk in Communities

AVF Arterio-venous fistula

BMI Body mass index
BP Blood pressure

Ca Calcium

CARE Combined analysis of the cholesterol and recurrent

events

CERA Continous erythropiosis receptor activator

CKD Chronic kidney disease CRP C reactive protein

CRS Cardio renal syndrome

CV Cardiovascular

CVD Cardiovascular disease DBP Diastolic blood pressure

DC Dentrite cells

DKD Diabetic kidney disease

DM Diabetis mellitus
 DN Diabetic nephropathy
 ECHO Echocardiograghy
 EDV End diastolic volume
 EF Ejection fraction

eGFR Estimated glomerular filteration rate

EPO Erythropiotin

ESRD End stage renal disease FBG Fasting blood glucose

FDA Food and Drug Administration
FGF 23 Fibroblast growth factor 23
GMB Glomerular basement membrane

HB HemoglobinHBV Hepatitis B virusHCV Hepatitis C virusHD Hemodialysis

HDL High density lipoprotein

HF Heart failure

HF-REF Heart failure reduced left ventricle ejection fraction

HIF Hypoxia inducible factor HPS Heart protection study

HTN Hypertension

IDL Intermediate density lipoprotein

KDIGO Kidney disease improving global outcomes

LDL Low density lipoprotein

Lp(a) Lipoprotein a LV Left ventricle

LVH Left ventricular hypertrophy

LVM Left ventricle mass

MC Mast cell

MDRD Modification of diet in renal disease study

mPAP Mean pulmonary arterial pressure

NO Nitric oxide

PAH Pulmonary arterial hypertension
PCWP Pulmonary capillary wedge pressure

PH Pulmonary hypertension

PLT Platelets Po4 Phosphorus

PTH Parathyroid hormone
RAS Renin angiotensin system
RCT Randomized control trial
SBP Systolic blood pressure
SD Standard deviation

T1DM Type 1 diabetes mellitus

TC Total cholesterol

List of Abbreviations

TG Triglyceride

TNT Treatment to new targets
UAE Urinary albumin excretion

US Ultrasound

VDR Vitamin D receptor

VLDL Very low density lipoprotein VSMC Vascular smooth muscle cell

WBC White blood cell

List of Tables

Table No.	Title	Page No.
Table (1):	Types of bone disorders in patients wi	th CKD26
Table (2):	KDIGO recommendations for manage biochemical abnormalities in patier CKD	nts with
Table (3):	Classification of Cardiorenal syndron	ne42
Table (4):	Comparison of prevalence of tracardiovascular risk factors between and dialysis populations	general
Table (5):	Trend of changes in lipids,lipoprot apoA-IV in various stages of CKD	
Table (6):	Lipid abnormalities by target po (approximate percentage)	•
Table (7):	Dana Point classification of PH	91
Table (8):	Demographic characteristics of the patients	
Table (9):	Stages of CKD according to eGFR	102
Table (10):	Laboratory findings of the studied pat	ients 103
Table (11):	Number and percentage of abnormation of studied population	
Table (12):	Mean Blood pressure and echo find the studied population	•
Table (13):	Correlations of SBP and DBP with laresults of studied population	•
Table (14):	Correlations of LV mass, EF and E demographic and laboratory data	

List of Figures

Figure No.	Title	Page No.
Figure (1):	Stages of chronic kidney disease	4
Figure (2):	Circadian BP and plasma cortisol	112
Figure (3):	Schematic representation o mechanisms underlying anen CKD.	nia of
Figure (4):	Role of hecidin in regulation level.	
Figure (5):	The factors involved in the patho of secondary hyperparathyroidism	C
Figure (6):	The pathophysiologic basis osteomalacia and osteitis fibrosa in patients with CKD, and various drugs act	cystica where
Figure (7):	A "stepped-care" approach prevention and treatment of sech hyperparathyroidism in CKD	condary
Figure (8):	The link between early kidney and cardiovascular disease	
Figure (9):	The interrelationship be cardiovascular and chronic disease	kidney
Figure (10):	Traditional and nontraditional factors associated with chronic disease promoting myocardia blood vessel remodeling	kidney al and

Figure (11):	2D ECHO (four-chamber apical view) showing LVH in a stage IIIb CKD patient
Figure (12):	Factors associated with the development of vascular calcification in chronic kidney disease
Figure (13):	Several mechanisms for PH92
Figure (14):	Possible etiology of CKD of the studied cases
Figure (15):	Echo findings of the studied population 106
Figure (16):	Correlation between SBP and eGFR 108
Figure (17):	Correlation between DBP and serum creatinine
Figure (18):	Correlation between DBP and urine alb/creat
Figure (19):	Correlation between LV mass serum creatinine
Figure (20):	Correlation between EF and urine eGFR
Figure (21):	Correlation between EDV and urine alb/creat
Figure (22):	Correlation between LV mass and urine alb/creat
Figure (23):	Correlation between EF and serum albumin
Figure (24):	Correlation between EDV and serum albumin

Introduction

Phronic kidney disease (CKD) is a global public health problem and is associated with increased cardiovascular risk and mortality and increased incidence of heart failure (HF) (*Park et al*, 2012, *Cai et al.*, 2014).

Cardiovascular mortality is estimated to be at least 10- to 100- fold higher in patients with end stage renal disease (ESRD) than in the age-, race-, and sex-matched general population (*Go et al.*, 2004).

This higher mortality is attributed to an increased risk of developing accelerated atherosclerosis, inflammation, vascular calcification, heart failure, and sudden cardiac death (*Herzog et al.*, 2011).

Cardiac structural and functional changes are important subclinical measures that have been associated with adverse clinical outcomes among patients with CKD and ESRD and a key factor in accelerating heart failure risk in these patients (Otsuka et al., 2009, Park et al., 2012, Bansal et al., 2013, Cai et al., 2014).

A better understanding of changes in left ventricular structure and function during the transition from CKD to ESRD may provide important insights to opportunities to improve cardiovascular outcomes.

Aim of the Work

The aim of the present study is to evaluate changes in cardiac structure and function among pre-dialysis CKD patients without heart failure and to assess the possible relationship between these changes and clinical and laboratory data.

Chapter 1 Chronic Kidney Disease

Thronic kidney disease (CKD) is defined as abnormalities of kidney structure or function, present for > 3 months, with implications for health. CKD is classified based on cause, GFR category (G1–G5), and albuminuria category (A1–A3), abbreviated as CGA (Wheeler et al., 2017).

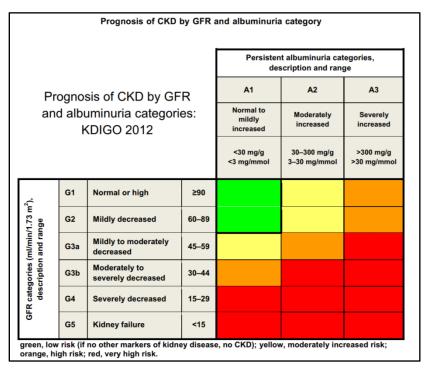


Figure (1): Stages of chronic kidney disease (KDIGO, 2012)

The *eGFR* is primarily determined by serum creatinine (SCr), and the preferred method for estimating GFR is the body surface area-normalized, 4-variable, Modification of