Endoscopic versus open procedures in the third ventricle tumors surgery

A Systematic Review and Meta-Analysis dissertation submitted in partial fulfillment of the conditions for the Award of a Master Degree in Neurosurgery

By

Muhammad Ahmad Elshanawani

Police officer neurosurgery resident at Nasr City police hospital

Under supervision of

Prof. Dr. Adel Nabieh Abdallah

Professor of neurosurgery Faculty of medicine, Ain-shams University

Ass.Prof.Dr. Hisham Anwer Abdelraheem

Assistant professor of neurosurgery Faculty of medicine, Ain-shams University

Dr. Sameh Mohammad Hefni

Lecturer of neurosurgery Faculty of medicine, Ain-shams University

Faculty of medicine Ain-shams University 2019

First, I would like to express my sincerest gratitude and gratefulness to *Allah* who continues to bless and fill me with hope, faith, patience and health to finish this work.

The fruition of this piece of scientific work couldn't have occurred without the combined effort of many people. Unfortunately, it is not possible to adequately acknowledge all those who have helped. However, I will wish to call attention to the assistance of several people.

First and foremost, I will like to thank my supervisors **Pr. Dr. Adel Nabieh, Ass. Pr. Dr. Hisham Anwer & Dr. Sameh Hefni** for accepting to supervise me and for their time and effort put-in to realize this review.

In addition, I will like to appreciate the effort of *Pr. Dr. Ashraf Ghobashi* and all the staff of Ain Shams department of Neurosurgery and El-Demerdash hospital.

I will like to thank all my *family members/friends* for always

List of Contents

Title	Page No.
List of figures	i
Introduction	1
Aim of the work	4
Review of litrature	5
Methodology	94
Results	97
Discussion	105
Summary	111
Conclusion	113
References	114
Arabic summary	

List of Figures

Fig. No. Title	Page No.
Figure (1): Emberyology of third ventricle	12
Figure (2): The ventricular system of the human brain	13
Figure (3): 3rd ventricle boundaries	
Figure (4): Anterior wall of the 3rd ventricle	15
Figure (5): Lateral wall of the third ventricle	16
Figure (6): floor wall of the third ventricle	17
Figure (7): In this saggital cut we differentiate two halves: the a	anterior
diencephalic half and the posterior mesencephalic h	alf18
Figure (8): Endosopic picture of the third ventricle floor: from	anterior
to posterior we see the optic recess(OR), theinfur	ndibular
recess(IR), the tuber cinereum (CT), the mammillary	bodies
(MB)	19
Figure (9): Roof: lateral to third ventricle transition	19
Figure (10): choroid fissure between the thalamus and the fo	ornix is
forming the medial part of the lateral ventricle flo	
also the roof of the third ventricle	
Figure (11): Pushing laterally the choroid plexus we can see	
choroid fissure between the body of the fornix (BF)	
thalamus (T) Way at the bottom we can guess t	
choroidea	
Figure (12): If we push aside medially the fornix, we can	
internal cerebral vein (ICV) on the same side, from	
arise he septal vein and the talamostriate vein (TSV)	
Figure (13): In this picture we can see both of the internal of	
veins (ICV) on the roof of the third vetricle Figure (14): Here we can see, after the removal of the splening	
retraction of the crus of the fornix, the entry of the	
cerebral veins (ICV) into the Galenic vein (GV)	
pineal region	
Figure (15): Posterior wall of the third ventricle	
Figure (16): Superior view of the posterior part of the third ve	
floor	
Figure (17): Drawing showing a midsagittal view of the third ve	
rigure (17). Drawing showing a midsagittal view of the time vi	C11411C1C ZU

List of Figures (Cont..)

Fig. No. Title	Page No.
Figure (18): A: Endoscopic view through the right foramen of	Monro.
B: Illustration of the endoscopically identified anat	tomy at
the floor of the ventricle	28
Figure (19): Development of the ventricular system neural cana	ıl31
Figure (20): Endoscopic view of the foramen of Monro	32
Figure (21): Subependymal Giant Cell Astrocytoma	35
Figure (22): Central neurocytoma in endoscopic view	37
Figure (23): Central neurocytoma under microscope, Uniform	n round
cells separated by fibrillary areas	37
Figure (24): central neurocytoma under microscope, Cells	having
round nucleus with finely speckled	37
Figure (25): central neurocytoma with IHC:Synaptophysin	38
Figure (26): Craniopharyngioma	41
Figure (27): Choroid Plexus Papilloma in endoscopic view	48
Figure (28): Choroid Plexus Papilloma microscopic view	48
Figure (29): Tanycytic Ependymoma	51
Figure (30): Myxopapillary Ependymoma.	51
Figure (31): gross pic. of Ependymoma	52
Figure (32): The radiological characteristics of these tume	ors are
relatively nonspecific	73
Figure (33): On MR imaging these lesions have the	e most
heterogeneous signal characteristics of all sellar	region
masses.	76
Figure (34): Magnetic resonance imaging studies of sup	
craniopharyngioma obtained in a patient after place	
a right ventriculoperitoneal shunt for treatm	ent of
hydrocephalus.	
Figure (35): CT and MRI brain showing third ventricular germin	
Figure (36): CT scan showing roof wall tumor (Choroid	
Papilloma)	
Figure (37): An MRI scan shows a large tumor (arrow) in the	•
region of the brain	
Figure (38): Surgical techniques of third ventricular tumors sur	gery95

List of Figures (Cont..)

Fig. No.	Title	Page No.
Figure (39): 7	The placement of craniotomy,	96
Figure (40):	Illustration of the standard right frontal ende	oscopic
ap	proach (a, b)	99
Figure (41): 5	Sample size of population of each group	104
Figure (42): 1	Mean age of each group of included surgical appro	aches 105
Figure (43): 7	The comparison between mean GTR of endoscopic	c group
an	d other surgical greoups	107
Figure (44):	Mean recurrence of endoscopic group vs other s	surgical
gre	oups	108
Figure (45): 1	Mean shunt dependency of the reported groups	109

Introduction

Primary third ventricular tumors are tumors that located in the wall of third ventricle or inside it; it depends on patient's age in its varieties. The most common type of these tumors involves astrocytomas that may compress the ventricle by direct spread. Third ventricle tumors are reliably not common tumors of the brain at all but it considered a major problem due to its effect on CSF dynamics, and also due to it mostly happened in children (*Mapstone, et al., 2001*).

The third ventricular region is one of the most challenging areas of the brain for surgery because of the complex anatomy and physiology of the surrounding hypothalamus, infundibulum, optic nerves, limbic system, and nearby vasculature. It is just this challenge that has excited the imagination of both neurologists and neuroscientists to understand the myriad of lesions that arise in this region and their diverse set of clinical presentations. (*Piepmeier, et al., 2003*)

Because of the unusual nature of these types of tumors and their interesting outcomes after operations, there is a gap of information and so this problem has a high importance. There was a role to excision the posterior half of the corpus callosum to complete excision of the tumor; the postoperative complications may develop the callosal syndrome, and that add another importance to the problem. (Ford, et al., 2001)

The most common type of third ventricle tumors is benign or low grade lesion and that makes the symptoms delay to be found and appear after the tumor grows and reaches several centimeters in size and the most common symptoms include headache, memory loss, cognitive changes and gait disorders. The approaches that are available to be done in these tumors surgeries are multiple; all are used to minimize the disturbance of normal anatomy whether the surgery will be done endoscopically or by open procedure. Of course before the surgeon embarks on an approach, he should be aware of important two things; ventricular anatomy and how to catch the lesion easily. Some of these approaches are transcallosal, transcortical and in some cases, supracerebellar, subfrontal, pterional and transtentorial approaches. Endoscopic techniques are important to be considered in surgeon's mind. (Sweet, et al., 2012)

The endoscopic procedure was used for the first time by Lespinasse in 1910 in performation of interventricular choroid plexus fulguration in cases of infantile hydrocephalus in treatment of them. (*Ja, et al., 2007*)

Endoscopic surgery is generally withheld in patients with small ventricles due to difficulties in ventricular cannulation and intraventricular manipulation. The effectiveness of flexible endoscopy for management of intraventricular brain tumors in patients with small ventricles was evaluated. (*Morota, et al., 2014*)

Neuroendoscopy has greatly impacted pediatric neurosurgery over the past few decades. Improved optics and microsurgical tools have allowed neuroendoscopes to be used for a multitude of neurosurgical procedures. (Guzman, et al., 2014)

Aim of the work

This work aims to review endoscopic versus open surgery in excision of third ventricular tumors regarding the extent of excision and the procedure complications.

Embryology

The ventricular system is embryologically derived from the neural canal, forming early in the development of the neural tube. The 3 brain vesicles (prosencephalon or forebrain, mesencephalon or midbrain, and rhombencephalon or hindbrain) form around the end of the first gestational month. The neural canal dilates within the prosencephalon, leading to the formation of the lateral ventricles and third ventricle. The cavity of the mesencephalon forms the cerebral aqueduct. The dilation of the neural canal within the rhombencephalon forms the fourth ventricle. (*Fitz Gerald MJT*, *et al.*, 2002).

The lateral ventricles communicate with the third ventricle through interventricular foramens, and the third ventricle communicates with the fourth ventricle through the cerebral aqueduct. During early development, the septum pellucidum is formed by the thinned walls of the 2 cerebral hemispheres and contains a fluid-filled cavity, named the cavum, which may persist. (*Fitz Gerald MJT*, et al., 2002).

Tufts of capillaries invaginate the roofs of pros encephalon and rhomb encephalon, forming the choroid plexuses of the ventricles. Cerebrospinal fluid (CSF) is

Review of literature

secreted by the choroid plexuses, filling the ventricular system. CSF flows out of the fourth ventricle through the 3 apertures formed at the roof of the fourth ventricle by week 12 of gestation. (*Fitz Gerald MJT*, et al., 2002).

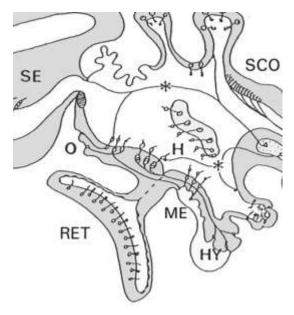


Figure (1): Emberyology of third ventricle

SE - septal region

O - vascular organ of the terminal lamina

RET – retina

H - hypothalamic CSF-contacting neurons

ME - median eminence

HY – Hypophysis

SCO - subcommissural organ

(Jan G Veening, et al., 2010)

Anatomy

Anatomy in brief:

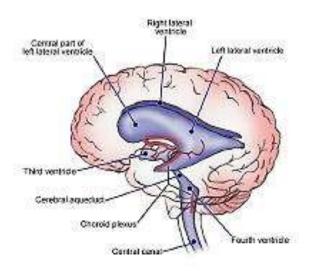


Figure (2): The ventricular system of the human brain. (Fitz Gerald MJT, et al., 2002).

The third ventricle is the narrow vertical cavity of the diencephalon. A thin tela choroidea supplied by the medial posterior choroidal arteries (branch of posterior cerebral artery) is formed in the roof of the third ventricle. The fornix and the corpus callosum are located superiorly. The lateral walls are formed by the medial thalamus and hypothalamus. The anterior commissure, the lamina terminalis, and the optic chiasm delineate the anterior wall. The floor of the third ventricle is formed by the infundibulum, which attaches the hypophysis, the tuber cinereum, the mammillary bodies, and

Review of literature

the upper end of the midbrain. The posterior wall is formed by the pineal gland and habenular commissure. The interthalamic adhesions are bands of gray matter with unknown functional significance, which cross the cavity of the ventricle and attach to the external walls. (Gilman S, et al., 2003).

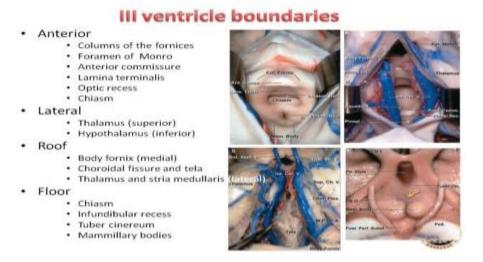


Figure (3): 3rd ventricle boundaries (Vikas Naik, et al., 2009).