Subcapsular renal hematoma in patients underwent upper ureteroscopic lithotripsy

Thesis

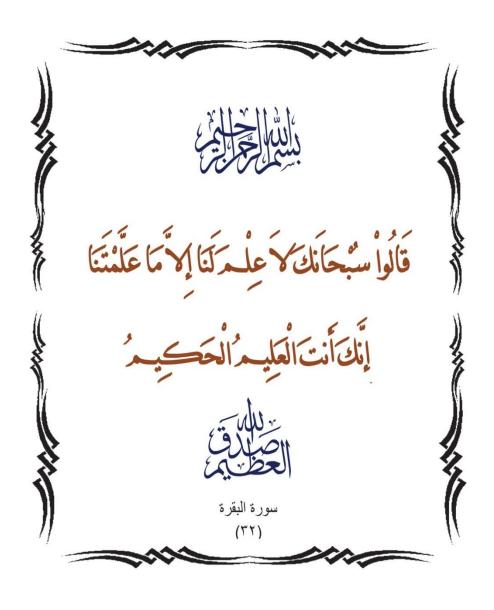
Submitted for Partial Fulfillment of Master Degree in Urology

Presented by

Ismail Mahdy Saleh

Resident of Urology
M.B.B.Ch., Faculty of Medicine – Ain Shams University
Cairo – Egypt.

Supervised by


Prof. Dr. Youssef Mahmoud Kotb

Professor of Urology
Faculty of Medicine Ain Shams University-Egypt.

Dr. Mohamed Kandeel Abd El Fattah

Lecturer of Urology
Faculty of Medicine Ain Shams University – Egypt.

Faculty of Medicine Ain Shams University Cairo – Egypt 2019

First and foremost, I feel always indebted to **Allah**, The Kindest and the Most Merciful.

I wish to express my deep thanks and profound gratitude to **Prof. Dr. Youssef Mahmoud Kotb,** Professor of Urology, Faculty of Medicine, Ain Shams University—Egypt. for his scientific help, valuable guidance, and kind supervision. He gave me much of his precious time, experience and valuable advices to complete this work in the best way.

Special thanks for **Dr. Mohamed Kandeel Abd El Fattah,** Lecturer of Urology, Faculty of Medicine,
Ain Shams University – Egypt, for dedicating so much of his
precious time and efforts and for honest and constant
guidance to complete this work.

I could never forget to offer my special thanks to all members of my **Family**, especially my **Parents**, for pushing me forward in every step of my life.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Study	6
Review of Literature	
Anatomy of the kidney	7
Ureteroscopy for upper ureteric stones	11
Subcapsular renal hematoma	19
Intracorporeal lithotripsy	36
Patients and Methods	41
Results	48
Discussion	64
Summary	70
Conclusion	73
References	74

List of Abbreviations

Abbrev. Full term

BMI : Body mas index

CKD : Chronic kidney disease

CT : Computed tomography

DM : Diabetes mellitus

EAU : European Association of Urology

ESWL : Extra corporeal shock wave lithotripsy

FURS : Flexible ureteroscopy

FURSL: Flexible ureteroscopic lithotripsy

HTN: Hypertension

IVC : Inferior vena cava

IVU: Intravenous urography

NCCT : Non-contrast CT

PCS : Pelvi-calyceal systemPL : Pneumatic lithotripsy

PNL : Percutaneous nephrolithotomyPULS : Post ureteroscopic lesion scale

RURS : Rigid ureteroscopy

RURSL : Rigid ureteroscopic lithotripsy

SMA : Superior mesenteric artery

SRH : Subcapsular renal haematoma

URS : Ureteroscopy

URSL : Ureteroscopic lithotripsy

UTI : Urinary tract infection

Ho:YAG: Holmium:Yttrium-aluminum-garnet

List of Tables

Table N	lo. Title	Page No.
Table (1):	Pre-operative patients' characterist	ics51
Table (2):	Pre-operative patients' risk factors	54
Table (3):	Pre-operative patients' stone size	56
Table (4):	Operation time in different lithotrip	osy types 58
Table (5):	Body mass index in different lithot types	1 0
Table (6):	Postoperative DJ application in difflithotripsy types	
Table (7):	Patients' preoperative urine culture	61
Table (8):	Distribution of risk factors between and non-SRH groups	

List of Figures

Figure N	lo. Title Pa	ige N	0.
Figure (1):	The subcapsular area of the kidney		4
Figure (2):	Kidney position in the abdomen		7
Figure (3):	Borders of subcapsular renal space	•••••	8
Figure (4):	Blood supply of the kidney	•••••	10
Figure (5):	Clavien-Dindo classification	•••••	14
Figure (6):	Modified Satava classification	•••••	15
Figure (7):	Post ureteroscopic lesion scale	•••••	15
Figure (8):	Charlson comorbidity index so system	_	18
Figure (9):	Illustration of subcapsular renal colle	ection	21
Figure (10):	Differentiation between perirenal SRH		23
Figure (11):	Other causes of SRH	•••••	24
Figure (12):	Intracorporeal pneumatic lithotripter	•••••	45
Figure (13):	Ho:YAG laser lithotripter	•••••	45
Figure (14):	Rigid and flexible ureteroscopes	•••••	45
Figure (15):	Left-sided SRH detected in the patient		49
Figure (16):	Percentage distribution between and females		52
Figure (17):	Distribution of gender in study group	os	52
Figure (18):	Distribution of age in study groups	•••••	53

Figure (19):	Percentage distribution between types of lithotripsy used	. 53
Figure (20):	Percentage distribution between degrees of hydronephrosis	. 55
Figure (21):	Distribution of stone size in study groups	. 57
Figure (22):	Distribution of operation time in study groups	. 58
Figure (23):	Percentage distribution between BMI levels in study groups	. 59
Figure (24):	Distribution of postoperative DJ in study groups	. 60
Figure (25):	Distribution of +ve preoperative urine culture in study groups	. 61

Introduction

rolithiasis is a major clinical and economic burden for modern health care system (Saigal et al., 2005).

International epidemiological data suggest that the prevalence of stone disease is steadily increasing with an estimated lifetime prevalence between 7-12% (**Turney et al.**, **2012**).

Meanwhile, the treatment for urinary calculi has continuously evolved in last decades from cut for stone to fish out the stone, with the number of ureteroscopies (URS) performed for stone disease increasing by 127% over last 10 period 2000-2010, as consequences of technological advances in medicine, particularly in endourology (Miller et al., 1999).

In addition the current guidelines recommended URS, over other treatments modalities including open surgery and in situ extra corporeal shock wave lithotripsy (ESWL), for majority of ureteric stones, with low complication rates, high stone free rate, short hospital stay and minimal contraindications for the procedure (Wright et al., 2004).

The management of ureteral calculi has changed dramatically in the last two decades with the development of smaller caliber ureteroscopes, nitinol instruments such as baskets and graspers, and the holmium:yttrium-aluminum-

garnet (YAG) laser lithotripsy. Ureteroscopy (URS) has become the treatment of choice for ureteral stones, particularly in the distal and mid-thirds. It has the advantages of higher stone-free rates, cost-effectiveness and early convalescence compared with other modalities such as shock wave lithotripsy (SWL) and open surgery. The literature on semirigid URS demonstrates a stone-free rate of 85–99 % depending on stone location (El-Nahas et al., 2009).

Ureteroscopic treatment of ureteral stones is an effective option with high success and low complication rates (**Hofmann et al., 2006**).

Ureteroscopy was first carried out in 1929 by Young and Mckay using a cystoscope in grossly dilated ureter (**Young and Mckay, 1929**), but it was not until the late 1970s that the rigid ureteroscope was used (**Gaizauskas et al., 2014**).

Pneumatic lithotripters are the most popular lithotripsy devices worldwide due to their safety and effectiveness (Gonen et al., 2006).

The subcapsular area of the kidney is a potential space where fluid can accumulate, causing compression of the renal parenchyma. Renal subcapsular hematoma is not an uncommon complication after extracorporeal shock wave lithotripsy (ESWL), trauma, renal angiographic procedures

and spontaneously in patients of malignancy and in patients on anticoagulation. (Chao YC et al., 2009). Subcapsular or perirenal hematoma is an unusual complication after ureteroscopy (URS) using pneumatic lithotripsy to treat ureteral stones. This complication can be classified as Grade 2b complication according to Satava classification system (Tepeler et al., 2014).

The probable etiology of subcapsular renal hematoma is the hydronephrosis associated with intrarenal pressure. The theory justifies that in a hydronephrotic kidney, increased intrarenal pressure causes kinking, stretching and/or obstruction of the major vessels (**Ninomiya et al., 2000**).

After ureteroscopic lithotripsy (URSL), ureteric recanalization induces the sudden expansion and rupture of the attenuated compressed parenchyma and/or capsular vessels. Blood and fluid accumulates in the subcapsular area of the kidney. Some studies claim that the renal capsule then gradually separates from the parenchyma and the hematoma is formed (Haydar et al., 2004).

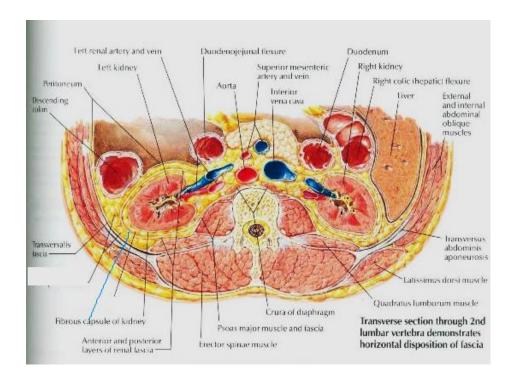


Figure (1): The subcapsular area of the kidney (Akdeniz et al., 2014).

The clinical presentation of these patients varies considerably based on the degree and duration of the bleeding. Acute onset of flank or abdominal pain is the most common symptom. Other patients may present with hematuria, a palpable mass or signs of blood loss (**Hsin et al., 2008**).

Small, asymptomatic hematomas resolve rapidly and spontaneously and are usually managed by conservative management. Conservative management includes antibiotics, control of pain with monitoring of vital signs, serum creatinine and haemoglobin values (Navarro et al., 2009).

Aim of the Study

The aim of this study is to show the risk factors of developing subcapsular or perirenal hematoma in patients underwent ureteroscopic pneumatic versus laser lithotripsy for upper ureteral calculi.

Anatomy of the kidney

The kidneys are very important organs in body forming the urinary system which excretes the excess water, salts and one of the vital organs in the human body. It receives the majority of cardiac output approximately 25% blood, through the renal arteries and these are end arteries with no anastomosis (Shirur et al., 2014).

The kidneys are located retroperitoneally between the level of the 12th thoracic and third lumbar vertebrae. The right kidney lies slightly lower than the left because of inferior displacement by the liver. The left kidney is slightly longer and slightly thicker than the right and lies closer to the midline (**Francis et al., 2002**).

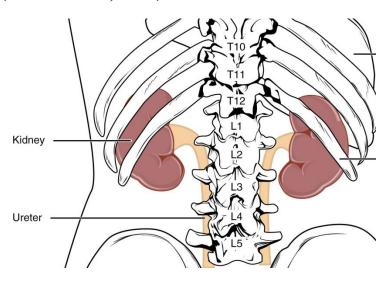


Figure (2): Kidney position in the abdomen (Guner et al., 2010)