

A Comparative Study of the Diagnostic and Prognostic Value of Macrophage Activation Marker Soluble CD163 and Alpha Fetoprotein in Cirrhotic Patients with Hepatitis C Virusrelated Hepatocellular Carcinoma treated by Loco-Regional Therapy

Thesis
Submitted for the Partial Fulfillment
of MD in **Internal Medicine**By

Marwa Ahmed Mohamed Mohamed Sakr

M.B., B.Ch. & M.Sc.
Faculty of Medicine - Ain shams university

Under Supervision of

Prof. Dr. / Khaled Abd El-Hamid Mohamed

Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine - Ain Shams University

Dr. / Eslam Safwat Mohamed

Assistant Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine - Ain Shams University

Dr. /Ahmed Mohamed Hussein

Assistant Professor of Radiology Faculty of Medicine - Ain Shams University

Dr. / Mohamed Hassan Ahmed Fouad

Lecturer of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine - Ain Shams University

Dr. /Ahmed Samir Allam

Lecturer of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2019

بسم الله الرحمن الرحيم

وَقُلِ اعْمَلُواْ فَسَيَرَى اللهُ عَمَلُواْ فَسَيَرَى اللهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ

صدق الله العظيم [سورة: التوبة - الآية: ١٠٥]

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

My profound thanks and deep appreciation to Prof. Dr. Khaled Abd El-Hamid Mohamed, Professor of Internal Medicine and Gastroenterology, Faculty of Medicine - Ain-Shams University, for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to Ass. Prof. Dr. Eslam Safwat Mohamed, Assistant Professor of Internal Medicine and Gastroenterology, Faculty of Medicine - Ain-Shams University, for adding a lot to this work by his experience and for his keen supervision.

I am also thankful to Ass. Prof. Dr. Ahmed Mohamed Hussein, Assistant Professor of Internal Medicine and Gastroenterology, Faculty of Medicine - Ain-Shams University, for his valuable supervision, co-operation and direction that extended throughout this work.

I would like to direct my special thanks to Dr. Mohamed Hassan Ahmed Fouad, Lecturer of Internal Medicine and Gastroenterology, Faculty of Medicine - Ain-Shams University, for his invaluable help, fruitful advice, continuous support offered to me and guidance step by step till this essay finished.

I cannot forget the great help of Dr. Ahmed Samir Allam, Assistant Professor of Internal Medicine and Gastroenterology, Faculty of Medicine - Ain-Shams University, for his invaluable efforts, tireless guidance and for his patience and support to get this work into light.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Words fail to express my love, respect and appreciation to my husband for his unlimited help and support.

Marwa Ahmed Mohamed

List of Contents

Title	Page No.
List of Tables	V
List of Figures	VII
List of Abbreviations	IX
Introduction	1 -
Aim of the Work	4
Review of Literature	
Hepatocellular Carcinoma	5
■ Treatment of HCC	35
 Macrophage Activation Marker Soluble CD 1 Tumor Markers 	
Hepatitis C Virus	65
Patients and Methods	90
Results	98
Discussion	118
Summary	128
Conclusion	133
Recommendations	134
References	135
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Sixth edition UICC TNM class HCC (2002)	
Table (2):	Modified Sixth edition TNM class HCC (is simplified into 4 stages to the optimum prognostic prediction)	to represent
Table (3):	OKUDA Staging System	31
Table (4):	CUPI score	33
Table (5):	CLIP scoring system	34
Table (6):	Several methods of locoregional to HCC	
Table (7):	Demographic characteristics a studied groups	~
Table (8):	Liver condition among HCC and L regard Child Pugh Score, Child Portal vein invasion	grade and
Table (9):	Laboratory data among the studied	d groups103
Table (10):	Basal tumor markers among t	
Table (11):	Comparison between the member group pre and post intervention AFP and CD163.	n regarding
Table (12):	Correlation between AFP and other among the studied groups	
Table (13):	Correlation between CD163 variables among the studied group	
Table (14):	AFP and CD163 among HCC case portal vein invasion.	

List of Tables cont...

Table No.	Title	Page No.
Table (15):	Diagnostic performance of basal (AFP in differentiating HCC from before treatment by ROC curve	LC groups
Table (16):	Diagnostic characteristics of CD16 in differentiating HCC from LC	
Table (17):	Tumor characteristics among HCC	group110
Table (18):	Failure of treatment among HCC gr	coup111
Table (19):	Comparison between failed-to-treat treated HCC cases regarding de characteristics and regarding be condition (Child score and grade)	emographic basal liver
Table (20):	Comparison between failure of treater treated HCC cases regarding findings	laboratory
Table (21):	Comparison between failed-to-t treated HCC cases regarding the focal lesions and overall size	number of
Table (22):	AFP and CD163 before and after in in recurrent and non-recurrent case	
Table (23):	Diagnostic performance of CD163 a predicting and diagnosing failure of	
Table (24):	Diagnostic characteristics of operation and differentiating requirements	

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Growth patterns of progressed hepat	
Fig. (2):	Surveillance imaging in adults at hepatocellular carcinoma	
Fig. (3):	Various gray scale US features of HC	Cs22
Fig. (4):	CT scans for a liver showing (A) enhancement and (B) portal venous w	
Fig. (5):	Demonstrates an isointense les segment VIII on precontrast T1-weig (a), which shows enhancement on the phase (b) and washout on the delayer (c) with an enhancing angula	hted 3D arterial ed phase
E: (a).	(c) with an enhancing capsule	
Fig. (6):	Celiac angiography revealed a hyper- tumor with proliferation of fine tumor	
Fig. (7):	BCLC staging system	32
Fig. (8):	The JIS score can be obtained by s up the TNM stage score (stages I, II, IV are allocated to scores 0, 1, 2, respectively) and Child-Turcotte-Pug score (stages A, B, and C are allos scores 0, 1, and 2, respectively)	III, and and 3, gh stage cated to
Fig. (9):	Modified BCLC staging classificate treatment schedule	
Fig. (10):	Shedding of sCD163	49
Fig. (11):	Monocyte recruitment, differentiation macrophages and their further involvement	nctional
Fig. (12):	Plasticity of macrophages in microenvironment and pathogenesis of	
Fig. (13):	The HCV Core antigen	
Fig. (14):	Natural history of HCV infection	

List of Figures cont...

Fig. No.	Title	Page No.
Fig. (15):	AFP among the studied groups "Whis Box plot"	
Fig. (16):	Soluble CD163 among the studied "Whisker and Box plot"	
Fig. (17):	Comparison between the members of group pre and post intervention re AFP "Whisker and Box Plot"	garding
Fig. (18):	Comparison between the members of group pre and post intervention re CD163 "Whisker and Box Plot"	garding
Fig. (19):	CD163 among HCC cases according t vein invasion	_
Fig. (20):	Basal CD163 and AFP in differentiation from LC before intervention "ROC cur	
Fig. (21):	Failure of treatment among HCC grou	
Fig. (22):	Comparison between recurrent an recurrent HCC cases regarding before after AFP "Whiskers and Box Plot"	d non- ore and
Fig. (23):	Comparison between recurrent an recurrent HCC cases regarding before after CD163 "Whiskers and Box Plot".	ore and
Fig. (24):	ROC curve for AFP and CD2 differentiating recurrent from non-recases	

List of Abbreviations

Abb.	Full term
5`-NPD	. 5`-Nucleotide phosphodiesterase
	. American Association for the Study of Liver Diseases
ADAM 17-TACE	. ADMN metallopeptide domain 17-tumor necrosis factor-α-converting enzyme)
<i>AFP</i>	. Alpha-Feto Protein
AFP-L3	. Lens culinarisagglutinin- reactive alpha- fetoprotein
<i>AFU</i>	. Alpha L-Fucosidase
<i>AJCC</i>	. American Joint Committee on Cancer
<i>ALP</i>	. Alkaline phosphatase
<i>ALT</i>	. Alanine Aminotransferase
<i>ART</i>	. Anti-retroviral therapy
AST	. Aspartate Aminotransferase
AUC	. Area under curve
BCLC	. Barcelona-Clinic Liver Cancer
<i>BSC</i>	. Best Supportive Care
<i>CBP</i>	. Child bearing period
CCL22	. C-C motif chemokine 22
CD163	. Cluster of Differentiation 163
<i>CDC</i>	. Centers for Disease Control
CEA	. Carcinoembryonic Antigen
CEUS	. Contrast enhanced ultrasound
CI	. Confidence Interval
<i>CKD</i>	. Chronic Kidney Disease
<i>CLD</i>	. Chronic liver disease
<i>CLIP</i>	. Cancer of the Liver Italian Program

Abb.	Full term
CR	. Complete response
	. Colony stimulating factor
	. Computed tomography
	. Chinese University Prognostic Index
	. Direct Acting Antivirals
DAC	
	. Des-gamma carboxyprothrombin
	. Drug drug interactions
DM	
DMSA	. Dimercaptosuccinic acid
	. Deoxyribonucliec acid
DWI	. Diffusion-weighted
EASL	. European Association for the Study of the Liver
ECOG	. Eastern Cooperative Oncology Group
EDHS	. Egyptian Demographic Health Survey
	. Estimated glomerular filteration rate
EHIS	. Egyptian Health Issues Survey
	. Enzyme immunoassay
<i>ELISA</i>	. Enzyme linked immunosorbent assay
<i>EORTC</i>	European Organisation for Research and Treatment of Cancer
<i>EPO</i>	. Erythropoietin
ER	. Endoplasmic Reticulum
	Endosomal-Sorting Complex Required for Transport
<i>ESLC</i>	. Egyptian Society of Liver Cancer
<i>EU</i>	

Abb.	Full term
EUS	. Endoscopic ultrasound
FE	-
<i>GPC3</i>	
	. Hepatitis B Virus surface Antigen
HBV	
HCC	. Hepatocellular Carcinoma
HCV	
HRP	. Horseradish peroxidase
HSP	. Heat shock protein
HTERT	. Human telomerase reverse transcriptase mRNA
<i>ICC</i>	Intrahepatic cholangiocarcinoma
<i>IDSA</i>	. Infectious Diseases Society of America
<i>IFN</i>	. Interferone
<i>IGF II</i>	. Insulin like growth factor 2
<i>IL-8</i>	. Interleukin-8
<i>INR</i>	. International normalized ratio
IOUS	. Intraoperative ultrasound
<i>ISDR</i>	. Interferon Sensitivity Determining Region
<i>IU</i>	. International units
JIS	. Japan Integrated Staging
<i>JSH</i>	. Japan Society of Hepatology
KDa	. Kilodalton
<i>LA</i>	. Laser ablation
<i>LDLT</i>	. Living Donor Liver Transplant
<i>LED</i>	. Ledipasvir
LI-RADS	. Liver imaging reporting and data system
<i>LPS</i>	. Lipopolysaccharide

Abb.	Full term
LRT	. Locoregional therapy
LT	. Liver Transplantation
<i>MAGE</i>	. Melanoma antigen gene
<i>MC</i>	. Monte Carlo
<i>MCT</i>	. Microwave coagulation therapy
<i>MELD</i>	. Model for End-stage liver Disease
<i>MMP</i>	. Matrix metalloproteinase
MRI	. Magnetic resonance imaging
<i>MSM</i>	. Men who have sex with men
<i>NAFLD</i>	. Nonalcoholic fatty liver disease
<i>NASH</i>	. Nonalcoholic steatohepatitis
<i>NAT</i>	. Nucleic acid testing
<i>NHL</i>	. Non Hodgkin lymphoma
<i>NNPIs</i>	. Non-nucleoside polymerase inhibitors
NTRs	. Non-Translated Regions
<i>OPTN</i>	. Organ Procurement and Transplantation Network
ORF	. Open Reading Frame
OS	. Overall survival
OST	. Opioid substitution therapy
PAL	. Percutaneous Acetic Acid Injection
PCR	. Polymerase chain reaction
PDGFR	. platelet-derived growth factor receptor
PEI	. Percutaneous Chemical Ablation
PEI	. Percutaneous ethanol injection
<i>PET</i>	. Positron emission tomography
<i>PMA</i>	. phorbol myristate acetate

Abb.	Full term
PS	. Performance State
PT	. Prothrombin time
PVT	. Portal vein thrombosis
<i>PWID</i>	. People who inject drugs
<i>RBV</i>	. Ribavirin
<i>RCT</i>	. Randomized control trial
<i>RDTs</i>	. Rapid diagnostic tests
<i>RFA</i>	. Radiofrequency Ablation
<i>RNA</i>	. Ribonucleic acid
<i>ROC</i>	. Receiver operating characteristic
ROS	. Reactive Oxygen Species
SCCA	. Serum squamous cell carcinoma antigen
sCD163	. Soluble CD163
SD	. Standard deviation
SHARP	. Sorafenib Hepatocellular Carcinoma
	Assessment Randomized Protocol
<i>SIM</i>	-
SOF	. Sofosbuvir
SRB 1	. Scavenger Receptor B1
SRCR	. Scavenger receptor cysteine-rich
STAT	. Signal transducer and activator of
	transcription
SVR	. Sustained Virological Response
<i>TACE</i>	. Transcatheter arterial chemoembolization
TACE-DEB	. Chemoembolization with Drug-Eluting Beads
<i>TAE</i>	. Transarterial embolization
<i>TAMs</i>	. Tumor-associated macrophages

Abb.	Full term
m. p. p.	
<i>TARE</i>	. Transarterial radioembolization
TGF-beta	. Transforming Growth Factor beta
<i>TLR</i>	. Toll-like receptor
<i>TNF</i>	. Tumor necrosis factor
<i>TNM</i>	. Tumor, node, and metastases
<i>TNM</i>	. Tumor-Node-Metastasis Staging System
UCSF	. University of California, San Francisco criteria
<i>UICC</i>	. Union International Contre le Cancer.
US	. Ultrasound
USA	. United states of America
VEGF	. Vascular endothelial growth factor
VEGFR	. Vascular endothelial growth factor receptor
VIP	. Vasoactive Intestinal peptide
WHO	. World Health Organization

ABSTRACT

Background: hepatocellular carcinoma (HCC) shows an increasing incidence and represents the third most common cause of cancer-related death.

Aim of the Work: is to evaluate the diagnostic value of serum level of Macrophage activation marker soluble CD163 as a tumor marker for HCC and its prognostic value after transarterial chemoembolization (TACE) or radiofrequency ablation (RFA), in comparison to alpha-feto protein (AFP).

Patients and Methods: this study was performed on 60 subjects from the outpatient Hepatology clinic and inpatient Gastroenterology and Hepatology Department at Ain Shams University Hospital. **Group I:** includes 40 randomly selected cirrhotic patients with hepatitis C virus-related hepatocellular carcinoma (excluding BCLC class D) who underwent either RFA or TACE. **Group II:** includes 20 patients with liver cirrhosis without hepatocellular carcinoma considered as control.

Results: soluble CD163 expression did not differ significantly between HCC group and liver cirrhosis group. This proves that soluble CD163 is not suitable for diagnostic use. On the other hand, soluble CD163 was associated with the severity of liver disease. Baseline soluble CD163 was significantly associated with disease progression independent of other risk factors known to be associated with an unfavorable course in HCC. Also the marked significant reduction of serum soluble CD163 levels in HCC patients subjected to either RF ablation or TACE proved that soluble CD163 may play a prognostic marker in HCC monitoring.

Conclusion: soluble CD163 is not suitable as a diagnostic marker for HCC but can be used as a prognostic marker for HCC.

Keywords: Macrophage Activation Marker Soluble CD163, Alpha Fetoprotein in Cirrhotic, Hepatitis C Virus, Hepatocellular Carcinoma, Loco-Regional Therapy