SYSTEMATIC DIAGNOSTIC APPROACH TO A SPECTRUM OF RED CELL ABNORMALITIES IN UNDIAGNOSED ANEMIAS IN EGYPTIAN CHILDREN AND ADOLESCENTS

Thesis

Submitted in Partial Fulfillment of Doctorate Degree in Pediatrics

Presented By

Nihal Hussien Aly

Under the Supervision of

Prof. Mohsen Saleh Elalfy

Professor of Pediatrics Faculty of Medicine –Ain Shams University

Prof. Safinaz Adel Elhabashy

Professor of Pediatrics Faculty of Medicine –Ain Shams University

Prof. Nadia Mohamed Mowafy

Professor of Clinical Pathology Faculty of Medicine –Ain Shams University

Dr. Eman Ahmed Ragab

Assistant Professor of Pediatrics Faculty of Medicine –Ain Shams University

Faculty of Medicine - Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Mohsen Saleh Elalfy**, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Safinaz** Adel Elhabashy, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof.** Madia Mohamed Mowafy, Professor of Clincial Pathology, Faculty of Medicine, Ain Shams University, for her help and encouragement.

I wish to introduce my deep respect and thanks to **Dr. Eman Ahmed Ragab**, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kindness, supervision, cooperation and active participation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to my colleagues (Marwa Waheed and Salwa Mostafa) for their support and all patients participated in this study.

Nihal Hussien Aly

List of Contents

Title	Page No.
List of Tables	i
List of Figures	v
List of Abbreviations	vii
Introduction	1
Aim of the Work	7
Review of Literature	
Microcytic Anemia	8
Normocytic Anemia	21
Macrocytic Anemia	39
Subjects and Methods	58
Results	75
Discussion	116
Summary	127
Conclusion	131
Recommendations	132
References	133
Arabic Summary	

List of Tables

Table No.	Title Page 1	Vo.
Table (1):	Variations in Hemoglobin Level and Mean Red Blood Cell Volume	1
Table (2):	Red blood cells shapes and their differential diagnosis	6
Table (3):	Classification of inherited and acquired sideroblastic anemia	15
Table (4):	Types and inheritance of various hereditary RBCS membrane disease	23
Table (5):	Classification of hereditary spherocytosis according to severity	25
Table (6):	Characteristic features of different types of CDA	33
Table (7):	Pyruvate kinase deficiency categorization by severity according to laboratory and transfusion pattern	35
Table (8):	WHO classification of G6PD variants	
Table (9):	Diagnostic testing for Pyruvate kinase deficiency	
Table (10):	Genetic causes of vitamin B12 deficiency	
Table (11):	Laboratory studies and diagnostic ranges of serum folate, cobolamin, MMA and homocysteine	
Table (12):	Characteristics of inherited bone marrow failure	
Table (13):	Genes involved in DBA pathophysiology	56
Table (14):	Normal reference of hemoglobin electrophoresis	64

List of Tables (Cont...)

Table No.	Title	Page	No.
Table (15):	Laboratory data at presentation a hemolytic microcytic patients and parents	their	76
Table (16):	Results of Hb electrophoresis, chain, alpha chain mutation an and EMA test in microcytic hem patients	alysis olytic	78
Table (17):	Diagnosis of the microcytic hem patients by different levels investigation	olytic s of	
Table (18):	Summary of data of micr hemolytic anemia patients	ocytic	
Table (19):	Laboratory results at present among non hemolytic micr patients and their parents	ocytic	82
Table (20):	Iron profile among non hem microcytic patients		83
Table (21):	Oral iron challenge test, celiac di screening Hb electrophoresis, beta and alpha chain mutation an among non hemolytic microcytic an	chain alysis	
	patients		83
Table (22):	Diagnosis of non hemolytic micr anemia patients by different lev investigations	vel of	85
Table (23):	Summary of data of non hem microcytic anemia	olytic	
Table (24):	Laboratory data at presentation a hemolytic normocytic patients and parents	mong their	

List of Cables (Cont...)

Table No.	Title Page	No.
Table (25):	EMA test and beta chain mutation analysis in hemolytic normocytic anemia patients	91
Table (26):	Diagnosis of the normocytic hemolytic patients by different levels of investigation	92
Table (27):	Summary of the data of hemolytic normocytic anemia patients	
Table (28):	Laboratory results at presentation among non hemolytic normocytic patients and their parents	
Table (29):	Diagnosis of non hemolytic normocytic anemia by different level of investigations.	
Table (30):	Summary of the data of the non hemolytic normocytic anemia patients:	98
Table (31):	Laboratory data at presentation among hemolytic macrocytic patients and their parents	101
Table (32):	Results of Serum Vitamin B12, folic acid	
Table (33):	Diagnosis of hemolytic macrocytic anemia by different level of investigations	103
Table (34):	Summary of the data of the hemolytic macrocytic patients	
Table (35):	Laboratory data at presentation among the non hemolytic macrocytic group and their parents.	106

List of Cables (Cont...)

Table No.	Title Page	No.
Table (36):	Results of Serum vitamin B12 and serum folic acid in non hemolytic macrocytic patients.	107
Table (37):	Results of bone marrow aspirate in the non hemolytic macrocytic patients:	108
Table (38):	Diagnosis of non hemolytic macrocytic anemia by different level of investigations	110
Table (39):	Summary of the data of non hemolytic macrocytic patients	112
Table (40):	Level of investigations in different studied groups	115
Table (41):	Diagnosis of different studied groups	115

List of Figures

Fig. No.	Title	Page No.
Figure (1):	World wide prevalence of anems	
Figure (2):	Peripheral smear examination sho normocytic, microcytic and macro cells	owing
Figure (3):	Diagnostic algorithm for the cl evaluation of IRIDA	inical
Figure (4):	(A). Peripheral blood smear sideroblasts. (B) Bone marked megaloblastoid features. (C) marrow smear shows several sideroblasts. (D) Bone marrow swith mitochondrial ferritin	arrow with Bone ring smear
Figure (5):	Point mutation causing β-thalassen	
Figure (6):	Distribution of beta thalass	
3	mutation among carriers	18
Figure (7):	Differential diagnosis of normanemia	
Figure (8):	A schematic representation of red cell (RBC) membrane structure	blood
Figure (9):	major functional components	s with B.
Figure (10):	anisocytosis and poikilocytosis	25 EMA- ormal ypical
T7 (44)	hereditary spherocytosis	
Figure (11):	Features of different subtype hereditary stomatocytosis	

List of Figures (Cont...)

Fig. No.	Title Pa	ge No.
Figure (12):	Megaloblastic anemia, wit macroovalocytes and hypersegmente	
Figure (13):	neutrophils	n
Figure (14):	Mechanism of vitamin B12 and fol- acid interaction in DNA synthesis	ic
Figure (15):	Algorithm for the evaluation of macrocytic anemia	
Figure (16):	Percentiles for MCV among boys an girls	ıd
Figure (17):	Normal reference range in osmot fragility test	
Figure (18):	Diagnostic algorithm for undiagnose microcytic anemia	
Figure (19):	Diagnostic algorithm for undiagnose normocytic anemia	
Figure (20):	Diagnostic algorithm for undiagnose macrocytic anemia	
Figure (21):	Blood film of patients No. (1) showin microspheroctes	ıg
Figure (22):	Blood film of patients No. (7) showin Pyropoikilocytosis and eliptocytes	_
Figure (23):	Distribution of different diagnoses of microcytic hemolytic anemia patients	
Figure (24):	Bone marrow film with iron stain of patients No. (1) showing rin	ıg
Figure (25):	sideroblast. Diagnosis of non hemolytic microcyt.	ic
Figure (26):	anemia patientsFlow chart of undiagnosed microcyt	
	anemia patients	88

List of Figures (Cont...)

Fig. No.	Title Page	No.
Figure (27):	Level of investigation applied to undiagnosed microcytic anemia patients	89
Figure (28):	Final diagnosis for microcytic anemia patients	
Figure (29):	Diagnosis of hemolytic normocytic anemia patients	93
Figure (30):	Diagnosis of non hemolytic normocytic anemia patients	97
Figure (31):	Flow chart for undiagnosed normocytic anemia	99
Figure (32):	Level of investigation applied to undiagnosed normocytic anemia	100
Figure (33):	Final diagnosis of undiagnosed normocytic anemia patients	100
Figure (34):	Diagnosis of hemolytic macrocytic patients	104
Figure (35):	Bone marrow film of patients No. (3) showing ring sideroblast.	109
Figure (36):	Diagnosis of non hemolytic macrocytic patients	111
Figure (37):	Flow chart of diagnosis of macrocytic anemia	113
Figure (38):	Level of investigation in undiagnosed macrocytic anemia	114
Figure (39):	Final diagnosis of undiagnosed normocytic anemia patients	114

List of Abbreviations

Full term Abb. AA.....Aplastic anemia ACP Aceruloplasminemia ADA.....Adenosine deaminase BTT.....Beta thalassemia major cb......Cobolamin CDA......Congenital dyserythropoietic anemia CHC.....Cryohydrocytosis CP.....Ceruloplasmin CRPC reactive protein DCDyskeratosis congenita DEB.....Diepoxybutane DIDMOADDiabetes inspidus, Diabetes Mellitus, Optic atrophy, Deafness DM.....Diabetes Mellitus DNA.....Deoxyribonucleic acid EDTAEthylenediaminetetraacetic acid EMAEosin-5'-maleimide Binding test EMSExtended metabolic screen FAFanconi Anemia FL.....Femtoliter FP.....Familial pseudohyperkalemia G6PD.....Glucose-6-phosphate dehydrogenase GPI.....Glucose-6-phosphate isomerase deficiency GR..... $Glutathione\ reductase$ HbAAdult hemoglobin HbA2Hemoglobin A2 HEHerediatary elliptocytosis Hgb......Hemoglobin

List of Abbreviations (Cont...)

HIF-1áHypoxia-Inducible Factor 1	
HNSHAHereditary nonspherocytic hemolytic anemia	
HPFHHereditary Persistence of fetal hemoglobin	
HPLCHigh performance liquid chromatography	
HPPHereditary pyropoikilocytosis	
HREHypoxia Responsive Element	
HSHereditary spherocytosis	
HSt:Hereditary stomatocytosis	
IRIDAIron refractory iron deficiency anemia	
IVSintervening sequence	
LDHLactate dehydrogenase	
McgMicrogram	
MCHMean corpuscular hemoglobin	
MCHCMean corpuscular hemoglobin concentration	
$MCVMean\ corpuscular\ volume$	
MDR1Multidrug resistance protein 1	
$MDS \dots Myelodysplasia$	
MMAMethyl Malonic Acidemia	
MMCMitomycin C	
MRIMagnetic resonance imaging	
MT-2 $Matriptase$ -2	
$NADPNicotinamide\ adenine\ dinucleotide$	
NGSNext generation sequencing	
OSOsmotic fragility	
PBLPeripheral blood lymphocyte	
PCRpolymerase chain reaction	
PFKPhosphofructokinase	
PKDPyruvate kinase deficiency	

List of Abbreviations (Cont...)

Abb.	Full term
PS	Phosphatidylserine
<i>RBC</i>	$Red\ blood\ cell$
<i>RCC</i>	Refractory cytopenia of childhood
<i>RDW</i>	Red cell distribution width
<i>RFT</i>	Reduced-folate transporter
<i>RNA</i>	Ribonucleic acid.
RS	Ring sideroblast
S/eta-thalassemia	Sickle beta thalassemia
SCA	Sickle cell anemia
SCD	Sickle cell disease
<i>SD</i>	Standard deviation
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
TC	Transcobolamin
<i>TF</i>	Transferrin
<i>TIBC</i>	Total iron binding capacity
<i>WHO</i>	World Health Organization

Introduction

nemia is defined as hemoglobin (Hgb) concentration and or red blood cell (RBC) mass less than the 5th percentile for age (Oski et al., 2003).

Table (1): Variations in Hemoglobin Level and Mean Red Blood Cell Volume (Matthew and Jason, 2013)

Age	Hemoglobin level in G per DL (GM per DL)		Mean corpuscular volume in μm³ (FL)	
Agt	Mean*	Diagnostic of anemia	Mean	Diagnostic of microcytosis
3 to 6 months	11.5 (115)	9.5 (95)	91(91)	74 (74)
6 months to 2 years	12.0 (120)	10.5 (105)	78 (78)	70 (70)
2 to 6 years	12.5 (125)	11.5 (115)	81 (81)	75 (75)
6 to 12 years	13.5 (135)	11.5 (115)	86 (86)	77 (77)
12 to 18 years (female)	14.0 (140)	12.0 (120)	90 (90)	78 (78)
12 to 18 years (male)	14.5 (145)	13.0 (130)	88 (88)	78

Epidemiology of anemia:

Anemia affects 1.62 billion people all over the world, which corresponds to 24.8% of the population. The preschool-age children has the highest percentage, and the lowest percentage is in men (De Benoist et al., 2008).

According to the World Health Organization (WHO), half of the anemia cases diagnosed are due to iron deficiency

(WHO, 2001). However, the prevalence of iron deficiency is 2.5 times much more than that of anemia as anemia is a late indicator of iron deficiency (Zimmermann and Hurrell, 2007).

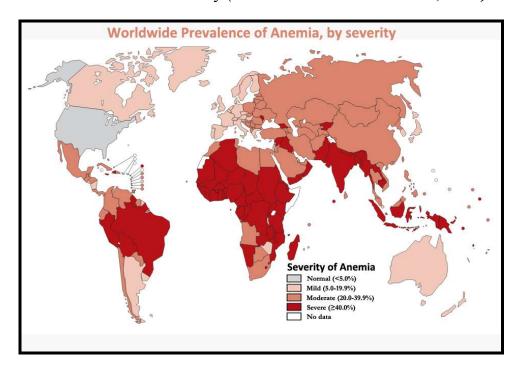


Figure (1): World wide prevalence of anemia by severity (WHO, 2015)

By getting data from the Egyptian Demographic and Health Survey, it was found that between the duration of 2000 to 2005, the prevalence of anemia increased from 37.04% to over 52% between the Egyptian children ranging from 12 months to 36 months of age (Austin et al., 2012). However, in another study done by Mansour and his colleagues in Quena revealed 12% anemia among school aged children and this may be to iron fortification program (Mansour et al., 2004).