Role of MSCT in Diagnosis of Interstitial Lung Disease in Children

Essay

Submitted for Partial Fulfillment of Master Degree in Radio Diagnosis

Presented byAhmed Abd El Wahab Abd El Salam Matar

M.B.B.Ch, Al-Azhar University

Supervised by

Prof.Dr.Khaled Aboualfotouh Ahmad

Professor of Radiology Faculty of Medicine, Ain-Shams University

Prof. Dr. Laila Abd El Ghaffar Hegazy

Professor of Pediatrics Faculty of Medicine, Ain-Shams University

Dr. Merhan Ahmed Nasr

Lecturer of Radiology Faculty of Medicine, Ain-Shams University

> Faculty of medicine Ain-Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Khaled Aboualfotouh**Alumad, Professor of Radiology Faculty of Medicine, AinShams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Laila Abd El Ghaffar Hegazy**, Professor of Pediatrics Faculty of Medicine, Ain-Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Merhan Ahmed**Masr, Lecturer of Radiology Faculty of Medicine, Ain-Shams

University, for her great help, active participation and guidance.

Ahmed Abd El Wahab Abd El Salam Matar

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	12
Introduction	1
Aim of the Essay	18
Gross and Radiological Anatomy of the Lung	19
Pathology of Interstitial Lung Disease In Child	lren 32
Technique of Multislice CT in Children	38
Manifestation of Interstitial Lung Diseases	
Summary& Conclusion	89
References	90
Arabic Summary	—

List of Tables

Table N	o. Title	Page No.
Table (1):	Maximum flow rate adjusted to the size	of the iv
	cannula	44
Table (2):	Guidelines for the selection of the scan de	elay in CT
	with iv CM. max maximum; * BT100 or B7	Γ150 is the
	time required to reach a threshold of + 100	HU and +
	150 HU, respectively, with bolus trace	cking; **
	adaptation of injection time necessary to	make sure
	that scan starts before end CM injection	45

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Trachea and main bronchus	19
Fig. (2):	Coronal CT, trachea and main bronchus	s21
Fig. (3):	Line drawing of bronchial tree	22
Fig. (4):	Axial CT of right upper lobe bronchus	24
Fig. (5):	Axial CT through posterior segme	
	bronchus RUL (B2)	24
Fig. (6):	Axial CT through anterior segme	
	bronchus RUL (B3)	
Fig. (7):	Axial CT through RML bronchus	
Fig. (8):	Axial CT through lower lobe segme	
F: (0)	bronchi	
Fig. (9):	Axial CT through carina, left upper bronchus	
Fig. (10):	Axial CT of left upper lobe brond	
11g. (10).	lingular – superior	
Fig. (11):	Axial CT through apical segme	
_	bronchus LLL (B6)	
Fig. (12):	Sagittal CT of left lower lobe brond	
	anteromedial basal	
Fig. (13):	X-ray chest—PA view	26
Fig. (14):	Sagittal CT and lateral chest showing	
	oblique fissure	
Fig. (15):	The mediastinal surface and fissures of	
D: (10)	lungs	
Fig. (16):	The repair process of the lung alve	
	structure following injury, and the influ of aging	
Fig. (17):	The role of TGF- β in the remodeling pro-	
1 15. (11).	of the lung alveolar structure follow	
	injury	

Fig. No.	Title	Page	No.
Fig. (18):	Illustration of the fixation of a baby us vacuum pillow (reproduced with perm from the parents)	ission	42
Fig. (19):	Chest CT image from a case of aspir pneumonia showing consolidation with bronchograms involving the lower lot the lungs	ration th air bes of	
Fig. (20):	Inspiratory (A) and expiratory (B) CT image a patient with bronchiolitis obliterans mosaic attenuation of the lungs with personal ground-glass opacification that is accentual expiration	show patchy ited on	56
Fig. (21):	A ground-glass appearance with increased attenuation of the lungs	hazy	
Fig. (22):	CT in a patient with lymphangiom shows linear and polygonal opacities re to interlobular septal thickening, conspicuously at the perip	elated most oheral	57
Fig. (23):	paramediastinal and posterior lung reg A fine reticular pattern of septal thick is demonstrated on this CT image fi child with nonspecific inter- pneumonia	tening rom a stitial	
Fig. (24):	A chest CT image from a patient juvenile dermatomyositis shows of peripheral opacities with subpleural barchitectural distortion, and tra- bronchiectasis related to pulmonary fit	with coarse pands, action	

Fig. No.	Title	Page No.
Fig. (25):	CT image from a patient with myelogenous leukemia and idi pneumonia syndrome shows a paving" pattern of superimposed thickening and ground-glass opacif most conspicuously in the right lung.	opathic "crazy- septal ication,
Fig. (26):	The presence of perilymphatic nodule a beaded appearance to some bronchovascular bundles on this chimage from a patient with puls sarcoidosis	of the nest CT monary
Fig. (27):	Hematogenous dissemination of the process in miliary tuberculos represented by the presence of radistributed pulmonary nodules on the CT image	sis is ndomly
Fig. (28):	Numerous centrilobular ground nodular opacities are depicted on the CT image from an adolescent hypersensitivity pneumonitis	is chest with
Fig. (29):	Branching centrilobular opacities in in-bud pattern are shown in the left lobe on this chest CT image fradolescent with an atypical mycobinfection and lymphocytic bronchiolit	a tree- et lower om an acterial
Fig. (30):	A chest CT image from a child pulmonary Langerhans cell histic demonstrates numerous air-filled walled cysts in the lungs	d with ocytosis thin-

Fig. No.	Title	Page	No.
Fig. (31):	A chest CT image of an 18-year-old graft-versus-host-disease shows paground-glass opacity and consolidation air bronchograms at the periphery oright lower lobe, consistent with organ pneumonia	atchy with f the izing	64
Fig. (32):	Diffuse alveolar damage is histopathologic correlate in this infant respiratory failure and crazy-paving chest CT (A) and in this teenage transplant recipient with primary dysfunction and patchy ground-opacity and consolidation on chest CT (2)	with g on lung graft glass	65
Fig. (33):	Lymphoproliferative disease		
Fig. (34):	A 4-year-old with anemia and hemogeneities symmetric perihilar and much basilar pulmonary airspace opacities CXR (A) and patchy consolidation, granglass opacities, septal thickening, crazy-paving on CT (B), reflecting effects of combined acute and ch	edial s on ound- and the	
	pulmonary hemorrhage		69
Fig. (35):	An CT image from a 17-year-old with history of mineral oil use for che constipation depicts a crazy-paving parattributable to exogenous lipoid pneumons.	ronic ttern	71
Fig. (36):	Hypersensitivity pneumonitis in a 14-		, <i>(</i> 1
8 · (00)•	old child	-	72

Fig. No.	Title Page	No.
Fig. (37):	The lateral CXR (A) of a 2-year-old with recurrent wheezing following adenovirus pneumonia shows diaphragmatic flattening consistent with pulmonary hyperinflation. An image from an CT exam (B) obtained at 4 years of age reveals characteristics findings of bronchiolitis obliterans, including mosaic attenuation, pulmonary vascular attenuation in hyperlucent areas, bronchial wall thickening, and bronchiectasis	73
Fig. (38):	Pulmonary alveolar proteinosis attributable to a GM-CSF-alpha-receptor defect in a 3-year-old manifests with diffuse airspace opacification on CXR (A) and consolidation, ground-glass opacification, septal thickening, and crazy-paving on CT (B)	
Fig. (39):	EGPA (Churg-Strauss syndrome) in a 14-year-old child with myocarditis and cardiorespiratory collapse	
Fig. (40):	Chest CT images of a 6-year-old viewed at lung windows (A) and soft tissue windows (B) shows thickening of the septae and bronchovascular bundles, as well as a small right pleural effusion and mediastinal edema characteristic of thoracic	
Fig. (41):	lymphangiomatosis	
E: (40)	hypertension and cor pulmonale	
Fig. (42):	CT image viewed at lung windows	80
Fig. (43):	CT images of NSIP in a 10-year-old with systemic sclerosis	81

Fig. No.	Title	Page No.
Fig. (44):	In a 12-year-old with pulmonary s	arcoidosis82
Fig. (45):	Images in a 7-month-old girl with of prematurity and broncho prematurity and b	pulmonary
Fig. (46):	Multiple subpleural cysts are den on this chest CT image from a with a lung growth disorder assoc trisomy 21	5-year-old ciated with
Fig. (47):	Image in a 17-month-old boy wit 21	th trisomy 85
Fig. (48):	Surfactant protein C mutation in a 9-month-old boy	
Fig. (49):	CT image of a 10-year-old with dyspnea shows extensive grepulmonary opacities, small cysts, thickened septa	ound-glass and a few
Fig. (50):	Chest CT images of a 3-month- with persistent tachypnea sho attenuation with geographic gro opacities of the posteromedial upp	w mosaic ound-glass

List of Abbreviations

Full term Abb. 3-D..... Three-dimensional ABPAAllergic bronchopulmonary aspergillosis AIP Acute interstitial pneumonia ALARAAs low as reasonably achievable ARDS Acute respiratory distress syndrome BG broncho-centric granulomatosis CEP...... Chronic eosinophilic pneumonia CFA Cryptogenic fibrosing alveolitis chILD Children's interstitial lung disease CT......Computed tomography CTA CT angiography CVL.....Central venous lines CXR......Chest radiographs DAD..... Diffuse alveolar damage EMT..... Epithelial-mesenchymal transition GM-CSF..... Granulocyte macrophage colonystimulating factor HVL..... Half value layer IHS...... Idiopathic hypereosinophilic syndrome ILDs...... Interstitial lung diseases IPF Idiopathic pulmonary fibrosis IPH..... Idiopathic pulmonary hemosiderosis LCH...... Langerhans cell histiocytosis LIP Lymphocytic interstitial pneumonitis MPR Multi-planar reconstruction

List of Abbreviations Cont...

INTRODUCTION

Interstitial lung diseases (ILDs) in childhood are a diverse group of conditions that primarily involve the alveoli and peri-alveolar tissues, leading to derangement of gas exchange, restrictive lung physiology, and diffuse infiltrates on radiographs. Because ILDs can involve the distal airspaces as well as the interstitium, the term diffuse infiltrative lung disease has been suggested. This nomenclature may be more accurate than ILD, but children's interstitial lung disease (chILD) has become the preferred term (Dishop, 2011).

Many types of chILD following some type of injury to the distal airspaces, such as adenoviral infection or exposure to organic dust, resulting in damage to the epithelial or endothelial layers and the associated basement membrane. Inflammation is present in many types of chILD, and many forms of chILD are triggered by inflammatory events, such as infection or hypersensitivity. Almost every type of inflammatory cell, including eosinophils and mast cells, have been described invarious types of chILD and can interact with fibroblasts and otherparenchymal cells. However, lung inflammation does not necessarily result in fibrotic remodeling, and fibrosis can occur in the absence of inflammation; therefore, inflammation has a prominent, but not acentral, role in lung remodeling and fibrosis (Das et al., 2011; Vece et al., 2011).

Resolution of fibrotic remodeling involves a complex series of orderly steps, including matrix breakdown and restructuring, re-epithelialization, and apoptosis of fibroblasts and inflammatory cells. Fibrotic remodeling is responsible for most of the morbidity and mortality associated with chILD. Remodeling of distal airspaces resulting hypoxemia. Persistent hypoxemia results in pulmonary hypertension and vascular remodeling, leading to corpulmonale, the increased work of breathing associated with reduced compliance results in increased energy expenditure, which, combined with the effects of inflammatory mediators, can result in cachexia. Portions of the lung may be replaced by fibrotic septae between dilated airspaces, the so-called honeycomb changes of end stage interstitial disease. Although the events described above are necessary for repair of the injured lung, excessive activation or failure of resolution of any of these pathways can result in disabling fibrosis (He et al., 2014).

As a result of the rarity of ILDs in children and the important differences between childhood ILD and ILDs that affect adults, a great deal of confusion surrounds their nomenclature, classification, and management. Idiopathic pulmonary fibrosis (IPF, also known as cryptogenic fibrosing alveolitis [CFA], the most prominent adult ILD, mostly occurs after the fifth decade of life; this entity is not found in children. Unlike in adults, most ILDs in children are found to have an underlying cause. In addition, the clinical significance of the