

ATTENUATION OF TRANSFORMER INRUSH CURRENT USING CONTROLLED SWITCHING SYSTEM ON DELTA-STAR TRANSFORMER

By Eng. Mohamed Hassan Hashem Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University In partial Fulfillment of the Requirements for the Degree of

> Master of Science In Electrical Power and Machines Engineering

ATTENUATION OF TRANSFORMER INRUSH CURRENT USING CONTROLLED SWITCHING SYSTEM ON DELTA-STAR TRANSFORMER

By Eng. Mohamed Hassan Hashem Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University In partial Fulfillment of the Requirements for the Degree of

Master of Science In Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Ahdab Mohamed Kamel Elmorshedy

Ass. Prof. Ahmed Mohamed Emam

Professor of High Voltage Engineering
Electrical Power and Machines
Department
Faculty of Engineering, Cairo University

Associate Professor of High Voltage
Engineering
Electrical Power and Machines Department
Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University Giza, Egypt 2019

ATTENUATION OF TRANSFORMER INRUSH CURRENT USING CONTROLLED SWITCHING SYSTEM ON DELTA-STAR TRANSFORMER

By Eng. Mohamed Hassan Hashem Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

Master of Science In Electrical Power and Machines Engineering

Approved by Examining Committee:

Name	Signature
1- Prof. Dr. Ahdab M. K. Elmorshedy (Thesis Main Advisor)	
Professor of High Voltage Engineering	
Electrical Power and Machines Department	
Faculty of Engineering, Cairo University	
2- Ass. Prof. Ahmed Mohamed Emam (Advisor)	
Associate Professor of High Voltage Engineering	
Electrical Power and Machines Department	
Faculty of Engineering, Cairo University	
3- Prof. Dr. Hany M. Amin Elghazaly (Internal Examiner)	
Professor of High Voltage Engineering	
Electrical Power and Machines Department	
Faculty of Engineering, Cairo University	
4- Prof. Dr. Sayed Abo-El Sood S. Ward (External Examiner)	
Professor and Head of Electrical Engineering Department Faculty of	
Engineering at Shoubra, Banha University	

Faculty of Engineering, Cairo University Giza, Egypt 2019 **Engineer's Name:** Mohamed Hassan Hashem Ibrahim

Date of Birth: 30/ 01 / 1989 **Nationality:** Egyptian

E-mail: M Hashem 80@yahoo.com

Phone:01100396065Address:Cairo, EgyptRegistration Date:01 / 10 / 2012

Awarding Date: /

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Ahdab Mohamed Kamel Elmorshedy

Ass. Prof. Ahmed Mohamed Emam

Examiners:

Prof. Dr. Ahdab Mohamed Kamel Elmorshedy

Ass. Prof. Ahmed Mohamed Emam

Prof. Dr. Hany Mohamed Amin Elghazaly

Prof. Dr. Sayed Abo-El Sood Sayed Ward (Professor and Head of Electrical Engineering Department, Faculty of Engineering at Shoubra)

Title of Thesis:

Attenuation of Transformer Inrush Current using Controlled Switching System on Delta-Star Transformer

Key Words:

Inrush Current Mitigation; Residual Flux; Controlled Switching System; Transformer Models; Harmonics

Summary:

Reduction and methods of control of switching transients have become important concerns to the power industry. Power transformers are vital components in electric power system. This thesis presents a technique for attenuation of transformer inrush current. The proposed technique is applied to 66/11.5 kV, 25 MVA power transformer with delta connected winding using ATP-EMTP software. The main idea of the proposed technique is using controlled transformer energization preceded by controlled de-energization to achieve a defined and repeatable residual flux with its lowest possible level for individual phases, and then determine the optimal instant of energization considering the core residual flux.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Acknowledgments

All praises and thanks to Allah for guiding me to complete this thesis by providing me with very valuable persons to support me during my work.

There is no word that can express my deepest appreciation and sincere to Prof. Ahdab Elmorshedy for her helpful advice, important support, encouragement, and the time she offered me during supervision. I am grateful for having opportunity to study and to work under her supervision.

My deep gratitude and thanks are dedicated to the Dr. Ahmed Emam, for his continuous guidance, valuable and fruitful suggestions, and help in achieving this work. No words can describe his great and important support and care.

Finally, my thanks to my family for their encouragement, support, and patience all the time in order to complete my thesis on its best form.

Table of Contents

ACKNOWLEDGMENTS	II
TABLE OF CONTENTS	III
LIST OF TABLES	IX
LIST OF FIGURES	X
LIST OF SYMBOLS AND ABBREVIATIONS	XV
ABSTRACT	XVIII
CHAPTER 1: INTRODUCTION	1
1.1. General:	1
1.2. Inrush Current Phenomenon:	1
1.3. Controlled Switching Technology:	2
1.4. The Proposed Technique:	2
1.5. Thesis Outlines:	3
CHAPTER 2: INRUSH CURRENT	4
2.1. Introduction:	4
2.2. Formation of Magnetizing Inrush Current:	4
2.2.1. Residual Flux:	6
2.3. Characteristics and Nature of Inrush Current:	7
2.4. Types of Magnetizing Inrush Current:	7
2.4.1. Initial or Energization Inrush Current:	7
2.4.2. Recovery Inrush Current:	8

2.4.3. Sympathetic Inrush Current:	9
2.5. Undesirable Effects of Transformer Energizing Transients:	10
2.5.1. Electro-Mechanical Stresses:	10
2.5.2. Harmonic Resonant Over-Voltages:	11
2.5.3. Nuisance Relay Operation:	11
2.5.4. Voltage Dips:	11
2.6. Factors Influencing Inrush Current:	11
2.6.1. Series Resistance:	11
2.6.2. Geometry and Properties of Transformer Core Materials:	12
2.6.3. Residual Flux Level:	12
2.6.4. Air-Core Inductance:	12
2.6.5. Various Loading Conditions:	12
2.6.6. Point on Voltage Waveform:	13
2.7. Various Suppression Techniques of Inrush Current:	13
2.7.1. Current Restricting Impedance:	14
2.7.2. Sequential Phase Energization Technique:	14
2.7.3. Negative Temperature Coefficient Power Thermistors:	15
2.7.4. Tap Changer Method:	15
2.7.5. Controlling Residual Flux:	15
2.7.6. Modifying Transformer Design:	15
2.7.7. Controlled Switching:	15
CHAPTER 3: CONTROLLED SWITCHING TECHNOLOGY.	17
3.1. Definition and Concept of Controlled Switching:	17

3.2. Various Strategies of Controlled Switching:	
3.2.1. Rapid Closing Strategy:	
3.2.2. Delayed Closing Strategy:	
3.2.3. Simultaneous Closing Strategy:	
3.3. Controlled Switching Neglecting Residual Flux:	
3.4. Controlled Switching Taking into Account Residual Flux:19	
3.4.1. Random De-energization Followed by Controlled Energization:	
3.4.2. Controlled Energization Based on Preceding Controlled De-energization:	
3.4.2.1. Controlled Opening Process:	
3.4.2.2. Controlled Closing Process: 21	
3.5. Types of Various Controlled Switching Controllers:23	
3.6. Role and Characteristics of CBs Affecting Controlled Switching Performance:	
3.6.1. Types of CBs According to their Operating Mechanisms: 24	
3.6.1.1. Single Pole Operated: 24	
3.6.1.2. Three Pole Operated:	
3.6.2. Breaker Mechanical Scatter of Operating Time:	
3.6.3. Variations of CBs Operating Times:	
3.6.3.1. Dielectric Variations: 27	
3.6.3.2. Mechanical Variations:	
3.7 Various Sensors Used for Controlled Switching 28	

3.7.1. Travel Sensor:	28
3.7.2. Voltage/Current Sensor:	29
3.8. Benefits of Controlled Switching:	29
CHAPTER 4: THE PROPOSED TECHNIQUE	30
4.1. Introduction:	30
4.2. ATPDraw Software:	30
4.2.1. Transformer Models in ATPDraw:	31
4.2.1.1. STC Model:	31
4.2.1.2. BCTRAN Model:	31
4.2.1.3. XFMR Model:	32
4.2.1.4. UMEC Model:	33
4.2.2. Simulation Modules used for Transient Simulation Studie	s:33
4.2.3. Saturation Curves:	34
4.3. Harmonic Phenomenon:	34
4.4. The System under Study:	35
4.5. The Proposed Technique:	41
4.5.1. Determination of Optimum Instant of Energization:	44
4.5.2. Methodology and Algorithm:	45
CHAPTER 5: RESULTS AND DISCUSSIONS	47
5.1. Introduction:	47
5.2. Uncontrolled Energization Process:	47

5.2.1. Harmonic Analysis of Inrush Current:	.48
5.2.2. Various Influencing Factors on Inrush Current:	51
5.3. Controlled Switching Process:	59
5.3.1. Harmonic Analysis in Case of Controlled Switching:	.60
5.3.2. Investigation Fault Occurrence on Protection Devices:	.62
5.3.3. Various Influencing Factors on Inrush Current:	.63
5.4. Sympathetic Inrush Current:	.68
5.4.1. Sympathetic Inrush Current Caused by Energization of Single Transformer:	.68
5.4.1.1. Case When Energizing T1 with T2 Already Connected and Unloaded:	68
5.4.1.2. Case When Energizing T1 with T2 Already Connected and Loaded:	71
5.4.1.3. Case When Energizing T1 with T2 and T3 Already Connected and Unloaded:	. 74
5.4.1.4. Case When Energizing T1 with T2 and T3 Already Connected and Loaded:	77
5.4.2. Sympathetic Inrush Current Caused by Energization of Multiple Transformers:	.80
5.4.2.1. Case When Energizing T2 and T3 with T1 Already Connected and Unloaded:	. 80
5.4.2.2. Case When Energizing T2 and T3 with T1 Already Connected and Loaded:	83
5.4.2.3. Case When Energizing T2 and T3 with T1 and T4 Already Connected and Unloaded:	86
5.4.2.4. Case When Energizing T2 and T3 with T1 and T4 Already Connected and Loaded:	89
HAPTER 6: CONCLUSIONS AND FUTURE WORK	92

APPENDIX A	99
REFERENCES	94
6.3. Future Work:	93
6.2. Conclusions:	92
6.1. Introduction:	92

List of Tables

	Page
Table 4.1: Transformer Data	38
Table 4.2: Example for Determination of Optimum Switching	Angles44
Table A.1: Open Circuit Factory Test Data	99
Table A.2: Short Circuit Factory Test Data	100

List of Figures

Page
Figure 2.1: Simplified Magnetization Curve
Figure 2.2: Magnetizing Flux in a Core of a Transformer and Corresponding Magnetizing Current
Figure 2.3: Waveform of Typical Inrush Current
Figure 2.4: Circuit Diagram of Recovery Inrush Current
Figure 2.5: Circuit Diagram of Sympathetic Inrush Current9
Figure 2.6 (a): Sympathetic Inrush Current in Phase A of Parallel Transformers
Figure 2.6 (b): Sympathetic Inrush Current in Phase B of Parallel Transformers
Figure 2.6 (c): Sympathetic Inrush Current in Phase C of Parallel Transformers
Figure 2.7: Waveform of Voltage, Flux and Magnetizing Current of a Transformer at Steady State Operation
Figure 2.8: Circuit Diagram of Sequential Phase Energization Technique
Figure 3.1: Block Diagram of Controlled Switching Structure
Figure 3.2: Defining Optimal Point On Voltage Waveform
Figure 3.3: Timing Chart of Controlled Opening Sequence
Figure 3.4: Timing Chart of Controlled Closing Sequence
Figure 3.5: Operating Principle of Controlled Closing Process23
Figure 3.6: Circuit Diagram of Single Pole Operated Circuit Breaker
Figure 3.7: Circuit Diagram of Three Pole Operated Circuit Breaker

Figure 3.8: SLD of Transformer's Controlled Switching
Figure 4.1: Block Diagram of BCTRAN Model with Externally Excitation Branch
Figure 4.2: Schematic Diagram of XFMR Model
Figure 4.3: Single Line Diagram of Studied System
Figure 4.4: ATPDraw Circuit for System Simulation
Figure 4.5: ATPDraw Circuit Diagram for Analysis of Switching Resistance
Figure 4.6: ATPDraw Circuit Diagram for Analysis of Fault Occurrence
Figure 4.7: ATPDraw Input Dialog of BCTRAN Model
Figure 4.8 (a): ATPDraw Simulation Model for Studying Sympathetic Inrush Under Energising T1 with T2 Already Connected:39
Figure 4.8 (b): ATPDraw Simulation Model for Studying Sympathetic Inrush Under Energising T1 with T2 and T3 Already Connected:
Figure 4.8 (c): ATPDraw Simulation Model for Studying Sympathetic Inrush Under Energising T2 and T3 with T1 Already Connected:
Figure 4.8 (d): ATPDraw Simulation Model for Studying Sympathetic Inrush Under Energising T2 and T3 with T1 and T4 Already Connected:
Figure 4.9: Flow Chart for Proposed Technique
Figure 4.10: Voltage Waveform During De-energization and Energization Process
Figure 4.11: Core Fluxes During De-energization and Energization Process
Figure 5.1: Currents Waveform During Uncontrolled Energization Process 47