

DEVELOPMENT OF CARBIDIC AUSTEMPERED DUCTILE IRON (CADI)

By **Hayam Abokhasha Ali**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Metallurgical Engineering

DEVELOPMENT OF CARBIDIC AUSTEMPERED DUCTILE IRON (CADI)

By **Hayam Abokhasha Ali**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
InPartial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Metallurgical Engineering

Under the Supervision of

Prof. Dr. Abdel-Hamid Ahmed Hussein

Professor of Metallurgy
Mining, Petroleum, and Metallurgical
Department
Faculty of Engineering, Cairo University

Prof.Dr. Adel Abdel Moneim Saleh Nofal

Professor of Metal Casting Foundry Technology Laboratory Central Metallurgical R&D Institute (CMRDI)

Prof. Dr. Elsayed Mahmoud Elbanna

Professor of Metallurgy
Mining, Petroleum, and Metallurgical
Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

DEVELOPMENT OF CARBIDIC AUSTEMPERED **DUCTILE IRON (CADI)**

By Hayam Abokhasha Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

> in **Metallurgical Engineering**

Approved by the **Examining Committee**

Prof. Dr: Abdel-Hamid Hussein Thesis Main Advisor

Prof.Dr: Adel Abdel Moneim Saleh Nofal Advisor

Central Metallurgical R&D Institute (CMRDI)

Prof.Dr: Elsayed Elbanna Advisor

Prof. Dr: Mohamed Mamdouh Ibrahim **Internal Examiner**

External Examiner **Prof. Dr: Mohamed Abdel Wahab Waly**

Central Metallurgical R&D Institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer's Name: Hayam Abokhasha Ali

Date of Birth: 25/4/1979 **Nationality:** Egyptian

E-mail: <u>hayam.abokhasha79@yahoo.com</u>

Phone: 0103394510

Address: Cairo, El tebeen, El ruose 57.

Registration Date: 1/10/2014 **Awarding Date:** //2019

Degree: Master of Science

Department: Mining, Petroleum and Metallurgical Engineering

Supervisors:

Prof. Abdel Hamid Ahmed Hussien Prof. Adel Abdel Moneim Saleh Nofal

Central Metallurgical R&D Institute (CMRDI)

Prof. Elsayed Mahmoud El-Banna

Examiners: Prof. Abdel Hamid Ahmed Hussien (Thesis main advisor)

Prof. Adel Abdel Moneim Nofal (advisor)

Central Metallurgical R&D Institute (CMRDI)

Prof. Elsayed Mahmoud El-Banna (advisor)
Prof. Mohamed Waly (External examiner)

Central Metallurgical R&D Institute (CMRDI)

Prof. Mohamed Mamdouh Ibrahim (Internal examiner)

Title of Thesis:

Development of Carbidic Austempered Ductile Iron (CADI)

Key Words:

CADI; Impact toughness; Wear Resistance; Heat treatment; Austempering

Summary:

CADI is ductile iron containing carbides that is subsequently austempered to produce an ausferritic matrix with an engineered amount of carbides. The properties of this material are improved by alloying and also by varying the austempering heat treatment process parameters, and by dynamic and static condition. The presence of carbides is expected to promote an increase in the abrasion wear resistance, but on the other hand toughness is expected to decrease. Therefore, to maximize the performance of the CADI alloys to be used in a number of wear applications such as grinding balls, a good balance between abrasion resistance and toughness. To score this goal, four ways were achieved. The first one involved dynamic solidification, i.e. the introduction of mechanical vibration during solidification. The second involved alloying with Nb (1 %). The third was involved the combined action of Nb-alloying and dynamic solidification. Finally, heat treatment was carried out which included a two austempering temperature, in order to study the role of retained austenite during abrasion.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited

them in the references section.

Name: Hayam Abokhasha Ali	Date:
Signature:	

Dedication

Most importantly, none of this could have happened without my family. My husband Dr. Fawzy El Sayed who offered me unlimited devotion and encouragement through studying and everything. Every time I was close to uncompleted my graduate studies, he did not let me and I am, therefore, forever grateful. This dissertation stands as a testament to his unconditional love and support.

Acknowledgments

First and foremost, I have to thank my research supervisors, Professors Dr. Abdel Hamid Hussien, Dr. Adel Abdel Moneim Saleh Nofal and Dr. Elsayed Mahmoud Elbanna. Without their assistance and dedicated involvement in every step throughout the process, this thesis would have never been completed. I would like to thank them for their support and understanding over the past three years. I believe that I am lucky to be under supervision of this great committee.

My gratitude to my main supervisor, Prof. Dr. Abdel Hamid Hussien, whose teaching style and wide knowledge for different topics made a strong impression on me and I have always carried positive memories of his classes with me. He raised many interesting points in our discussion of early versions of this work and I hope that I have managed to address several of them here. Working with Prof. Dr. Abdel Hamid Hussien was an extraordinary experience in postgraduate level.

I am very grateful to Prof. Dr. Adel Abdel Moneim Saleh Nofal at the Central Metallurgical Research and Development Institute (CMRDI). Who provided me an opportunity to join their team as intern, and who gave access to the laboratory and research facilities. Without his precious support it would not be possible to conduct this research. His suggestions and discussions were very fruitful and he was very patient with my knowledge gap.

I would like to express my sincere gratitude to my supervisor Prof. Dr. Mohamed Abdel Wahab Waly at the Central Metallurgical Research and Development Institute (CMRDI) for the continuous support of my master study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in writing of this thesis. His course about solidification theory helped me greatly in explaining the material behavior during mechanical testes.

I must also thank two best friends at the Department of Metallurgy; Dr. Lamiaa Zaki, and Eng. Rania Mohamed for the continuous support of my master study and related research and giving me the chance to have this thesis rushed to the printer.

I would never forget the support of Eng. Rafaat Ahmed and My big sister Nadia Mohamed in machining specimens and measuring hardness, it is a great honor for me to work with them, for their efforts during the casting of my specimens and the staff of Foundry Technology Laboratory of CMRDI and particularly metallographic, melting, workshop staff for their sincere help.

.

Table of Contents

LIST OF TABLES	vii
LIST OF FIGURES	viii
NOMENCLATURE	xi
ABSTRACT	xii
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE SURVEY	4
2.1 Introduction	4
2.2 History	4
2.3 The Austempering Process	4
2.4 Process Window	6
2.5 The Austempered Ductile Iron (ADI)Microstructure	7
2.6 The Importance of Retained Austenite in ADI	8
2.7 Carbidic Austempered Ductile Iron (CADI)	8
2.8 Methods of Carbide Introduction Include	9
2.8.1 As-Cast Carbides	9
2.8.1.1 As-Cast Carbides Internal (Chemical or Inverse) Chill	9
2.8.1.2 Directional Surface Chill Carbides	10
2.8.2 Mechanically Introduced Carbides	10
2.8.2.1 Cast-in, Crushed MxCy Carbides	10
2.8.3 Welded	11
2.8.3.1 Hard Face Weldment	11
2.9 The Carbidic Ductile Iron (CDI) and CADI Microstructure	11
2.10 Role of Alloying Elements on CADI	13
2.10.1 Carbon	13
2.10.2 Silicon	13
2.10.3 Magnesium	13
2.10.4 Sulphur	14
2.10.5 Chromium	14
2.10.6 Niobium	15
2.11 Effect of Heat Treatment Parameters on the Properties of ADI	
and CADI	15
2.11.1 Austenitizing Temperature and Time	15
2.11.2 Austempering Temperature and Time	16
2.12 Effect of Microstructure on the Properties of CADI	16
2.13 Advanced Wear and Toughness Theory	18
2.14 Effect of Mechanical Vibration on Microstructure of Alloys	19

2.15 Effect of Niobium and Chromium Carbide on Microstructure of	20
Alloys	22
2.16 Solidification and Phase Equilibria in the Fe-C-Cr-NbC System	23
2.17 Possible Applications of CADI	23
2.17.1 Agriculture Applications	24
2.17.2 Wear Applications	25 25
2.17.3 General Industrial Applications	25
2.17.4 Railroad Applications	25
2.17.5 Automotive Application	26
2.18 Advantages and Need for CADI	27
CHAPTER 3: EXPERIMENTAL PROCEDURES	29
3.1. Research Objectives	29
3.2. Preparation of Castings and Alloying	30
3.3 Specimen Preparation	32
3.4 Composition Analysis	33
3.5 Heat Treatments	35
3.6 Characterization of CADI	37
3.6.1 Metallographic Examination	38
3.6.2 X-ray Diffraction Analysis (XRD)	39
3.6.3 Hardness Test	40
3.6.4Impact Test	40
3.6.5Wear Test	41
CHAPTER 4: RESULTS AND DISCUSSION	44
4.1 Composition	44 44
4.1 Composition	44
4.1 Composition4.2 Metallographic Examination of As-Cast CDI	44 44
4.1 Composition4.2 Metallographic Examination of As-Cast CDI4.3 Effect of Mechanical Vibration	44 44 45
4.1 Composition4.2 Metallographic Examination of As-Cast CDI4.3 Effect of Mechanical Vibration4.4 Effect of Niobium Addition	44 44 45 49
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 	44 44 45 49 51
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 	44 44 45 49 51 53
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 	44 44 45 49 51 53 53
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 	44 44 45 49 51 53 53 53
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 	44 44 45 49 51 53 53 53 55 55
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 	44 44 45 49 51 53 53 53 55
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 4.6.2.2 Hardness of Dynamic Samples after Austempering at 275°C / 375°C 	44 44 45 49 51 53 53 53 55 55
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 4.6.2.2 Hardness of Dynamic Samples after Austempering at 	44 44 45 49 51 53 53 53 55 55
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 4.6.2.2 Hardness of Dynamic Samples after Austempering at 275°C / 375°C 	44 44 45 49 51 53 53 53 55 55 55
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 4.6.2.2 Hardness of Dynamic Samples after Austempering at 275°C / 375° C 4.6.2.3 HRC hardness of Static and Dynamic CDI and CADI 4.7 Impact Toughness 4.7.1 Impact Toughness of the Static and Dynamic CDI 	44 44 45 49 51 53 53 53 55 55 55
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 4.6.2.2 Hardness of Dynamic Samples after Austempering at 275°C / 375° C 4.6.2.3 HRC hardness of Static and Dynamic CDI and CADI 4.7 Impact Toughness 4.7.1 Impact Toughness of the Static and Dynamic CDI 4.7.2 Impact Toughness of CADI 	44 44 45 49 51 53 53 53 55 55 55
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 4.6.2.2 Hardness of Dynamic Samples after Austempering at 275°C / 375° C 4.6.2.3 HRC hardness of Static and Dynamic CDI and CADI 4.7 Impact Toughness 4.7.1 Impact Toughness of the Static and Dynamic CDI 4.7.2 Impact Toughness of CADI 4.7.2.1 Impact Toughness of Dynamic CADI at 275°C, 375°C 	44 44 45 49 51 53 53 53 55 55 55 56 57 58 58 59 60
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 4.6.2.2 Hardness of Dynamic Samples after Austempering at 275°C / 375° C 4.6.2.3 HRC hardness of Static and Dynamic CDI and CADI 4.7 Impact Toughness 4.7.1 Impact Toughness of the Static and Dynamic CDI 4.7.2 Impact Toughness of CADI 4.7.2.1 Impact Toughness of Dynamic CADI at 275°C, 375°C Austempering Temperature 	44 44 45 49 51 53 53 53 55 55 55 56
 4.1 Composition 4.2 Metallographic Examination of As-Cast CDI 4.3 Effect of Mechanical Vibration 4.4 Effect of Niobium Addition 4.5 Effect of Heat Treatment 4.5.1 CADI (900-275) 4.5.2 CADI (900-375) 4.6 Hardness 4.6.1 Hardness of As-Cast CDI 4.6.2 Hardness of CADI 4.6.2.1 Hardness of Static Samples after Austempering at 275°C / 375°C 4.6.2.2 Hardness of Dynamic Samples after Austempering at 275°C / 375° C 4.6.2.3 HRC hardness of Static and Dynamic CDI and CADI 4.7 Impact Toughness 4.7.1 Impact Toughness of the Static and Dynamic CDI 4.7.2 Impact Toughness of CADI 4.7.2.1 Impact Toughness of Dynamic CADI at 275°C, 375°C 	44 44 45 49 51 53 53 53 55 55 55 56 57 58 58 59 60

4.7.2.3Impact Toughness of CADI at 275°C, 375°C	
Austempering Temperature and of CDI	62
4.8 Wear Resistance	62
4.8.1 Wear Rate in As-Cast CDI	62
4.8.2 Effect of Mechanical Vibration	63
4.8.3 Effect of Niobium Addition	63
4.8 4 Effect of Combination of Niobium Addition and Mechanical	
Vibration	64
4.9 Effect of Heat Treatment	64
4.9.1 Wear Rate of Static CADI at 275oC, 375oC Austempering	
Temperature	65
4.9.2 Wear Rate of Dynamic CADI at 275°C, 375°CAustempering	
Temperature	65
4.9.3 Wear Rate of CADI at 275°C, 375°C Austempering	
Temperature and of CDI	66
4.10 Analysis of Impact Test Fracture Surface	67
4.10.1 Effect of Mechanical Vibration	68
4.10.2 Effect of Niobium Addition	68
4.10.3Effect of Combination of Niobium Addition and Mechanical	
Vibration	69
4.10.4 Effect of Heat Treatment	69
CHAPTER 5: CONCLUSIONS	70
REFERENCES	72

List of Tables

Table 3.1: Chemical compositions of the CDI iron alloys	34
Table 4.1: Shows the volume fraction of carbides and the size.	50
Table 4.2: Nodule Count of UN Etched CDI alloys	52
Table 4.3: Hardness of Static and Dynamic carbidic ductile iron	56
Table 4.4: Hardness of Static and Dynamic carbidic austempered ductile	
iron	57
Table 4.5: Impact toughness of carbidic ductile iron	59
Table 4.6: Impact toughness of austempered carbidic ductile iron at 275°C,	
375°C	60
Table 4.7: Wear Rate of CDI before Heat treatment	63
Table 4.8: Wear rate of CADI alloys at 275°C and 375°C	64

List of Figures

Figure 2.1: A schematic diagram of ADI heat treatment cycle and the	
various phases of the ADI observed during ADI heat treatment	
cycle	6
Figure 2.2: A schematic presentation of microstructure changes with	7
austempering time during austempering process	7
Figure 2.3: Microstructure of ADI	8
Figure 2.4: CADI with 65% carbide and a500F,45%. Ausferrite matrix	9 9
Figure 2.5: CADI with carbide and a 500F. Ausferrite matrix	
Figure 2.6: CADI with 30% carbide and a 500F Ausferrite matrix Figure 2.7: Microstructure of hard-face welded ductile iron showing the	10
e	11
carbidic weld (light) and the pearlitic heat affected zone (dark) Figure 2.8: Microstructures before and after austempering. (a) The as-cast	11
microstructure of a sample $(100 \times)$, (b) Typical microstructure	
of the CADI ($100 \times$), (c) The as-cast microstructure of a	
sample (1000 \times), (d) Typical microstructure of the CADI	
(800 \times)	12
Figure 2.9: Thermogram for alloy, the arrows indicate the corresponding	12
transformations	21
Figure 2.10: SEM micrograph showing coarsened NbC carbides (primary	21
carbides) entrapped in austenite or between secondary arms	
of austenite dendrites	21
Figure 2.11: Thermal analysis of the B alloy	22
Figure 2.12: The four-phase L/y/M7C3/NbC tetrahedral equilibrium field	
in the Fe-C-Cr-NbC system at a fixed temperature T	23
Figure 2.13:Vicinity of the quaternary $L/\gamma/M7C3/NbC$ solidification	
equilibrium field at a fixed temperature T. (a) Three-phase	
fields, spatial view; (b) three-phase fields, exploded view; (c)	
two-phase fields, exploded view; and (d) basic solidification	
patterns	23
Figure. 2.14: Agricultural Applications	24
E' 0.15 W A 1' .'	2.4
Figure. 2.15: Wear Applications	24
Figure 2.16:General Industrial Applications	25
Figure 2.17: Railroad Applications	25
Figure. 2. 18: The shaft which is made to rotate and take output power	26
from the Combustion process in the chamber	
Figure 3.1: Flow Chart of Carbidic Ductile Iron Production	29
Figure 3.2: a) A typical vortex unit is made up for major cast iron and steel	
components, b) Vortex unit available at CMRDI	30
Figure 3.3: (A) Dimensions of Y-blocks, (B) Mould mounted on the	0.1
mechanical vibrator	31
Figure 3.4a: Mould mounted on the mechanical vibrator apparatus	32
Figure 3.4b: Front view of the mechanical mould	33

Figure 3.5: Cutting tool	33
Figure 3.6: Flow Chart of Carbidic Ductile Iron alloys	34
Figure 3.7: Foundry –Master Pro device for chemical analysis	35
Figure 3.8: Complete experimentation and characterization of carbidic	
austempered ductile iron	36
Figure 3.9: Electric resistance furnace Austenitizing (A) and Austempering	
(B)	37
Figure 3.10: Schematic of the austempering process	38
Figure 3.11: Zeiss Axiotech 30 optical microscope used in microstructure	
investigation	39
Figure 3.12: Scanning electron microscopy(SEM)	39
Figure 3.13: XRD Device	40
Figure 3.14: Hardness Test Device	41
Figure 3.15: ASTM standard charpy test specimen shape of impact	41
Figure 3.16: Charpy impact testing machine	42
Figure 3.17: Pin-on-disk machine setup	42
Figure 3.18: T-01M Pin-on-Disk testing machine for evaluation of friction	
and wear of engineering materials	43
Figure 3.19: Standard Wear test specimen	45
Figure 4.1: Microstructure of CDI: (a), (e)statically solidified CDI, (b), (f)	
dynamically solidified CDI,(c),(g)combined action with 1%Nb	
and static ,(d),(h) combined action with 1%Nb and dynamic	46
Figure 4.2: XRD profile of CDI with 1% niobium additions showing the	
microstructure to consist in pearlite, M7C3 and NbC	47
Figure 4.3: Microstructures contain spheroidal graphite and the carbides in	
the ausferrite matrix,(a)and(b) EDS analysis of spectrum (A)	
and (B) respectively evidencing it is niobium-rich carbides and	
chromium	48
Figure 4.4: Microstructures of CDI alloys: (a) & (c) statically solidified	
iron, (b) & (d) dynamically solidified iron, (e) & (g) iron with	
1%Cr, 1%Nb combined action. (f) & (h) 1.5%Cr, 1%Nb iron	
with combined action	49
Figure 4.5: Volume fraction of CDI alloys. A graph show Effect of	
mechanical vibration on carbide size, area percentage of	
carbides, B. graph show combined effect of Nb and dynamic	
solidification on area percentage of carbides and carbide size	50
Figure 4.6: Unetched nodule count /mm2 of CDI alloys: (1) & (3) statically	
solidified iron. (2) & (4) dynamically solidified iron, (5) & (6)	
iron with 1%Cr, 1%Nb combined action. (7) & (8) 1.5%Cr,	
1%Nb iron with combined action	52
Figure 4.7: Unetched of CDI alloys nodule count /mm2	52
Figure 4.10: XRD analysis for CADI sample	54
Figure 4.8: Microstructures of CADI samples at 275°C austempering	51
temperature	54
<u>r</u>	21
Figure 4.9: Microstructures of CADI samples at 375°C austempering	
temperature	55
Figure 4.11: HRC hardness of Static and Dynamic CDI	56
rigure 1.11. Three naraneos of blade and Dynamic CDI	50

Figure 4.12: HRC hardness of Static CADI at 2/5°C, 3/5°C austempering	
temperature	57
Figure 4.13: HRC hardness of Dynamic CADI at 275°C, 375°C	
austempering temperature	58
Figure 4.14: HRC hardness of Static and Dynamic CDI and CADI.	58
Figure 4.15: Impact toughness of the static and dynamic carbidic ductile	
iron	60
Figure 4.16: Impact toughness of Static CADI at 275°C, 375°C	
austempering temperature	61
Figure 4.17: Impact toughness of Dynamic CADI at 275°C, 375°C	
austempering temperature	61
Figure 4.18: Impact toughness of CADI at 275°C, 375°C austempering	
temperature and of carbidic ductile iron	62
Figure 4.19: Wear Rate of Static and Dynamic CDI	63
Figure 4.20: Wear Rate of Static CADI at 275°C, 375°C austempering	
temperature	65
Figure 4.21: Wear Loss of Dynamic CADI at 275°C, 375°C austempering	
temperature	65
Figure 4.22: Wear Rate of CADI at 275°C, 375°C austempering	
temperature and of Carbidic ductile iron	66
Figure 4.23: Fracture surfaces of some selected CADI: (a) statically	
solidified iron, (b) dynamically solidified iron, (c)	
dynamically solidified iron with 1%Nb, (d) static solidified	
with 1%Nb (e & f) combined action of Nb and dynamic	
solidification	68
Figure 4.24: Fracture surfaces of some selected CADI: (A) at 275°C, (B) at	
375°C	69

Nomenclature

CADI Carbidic Austempered Ductile Iron

CDI Carbidic Ductile Iron

DI Ductile Iron

ADI Austempered Ductile Iron
ARI Abrasion Resistance Irons
SEM Scanning Electron Microscopy

EDS Energy Dispersive X-Ray Spectroscopy